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to material modifications and medicine  [1]. To develop 
these applications, the physics of ultrashort pulse–mat-
ter interaction should be studied. The first signal of what 
is going on under the fast illumination comes thanks to 
the paper  [2], where the number of Newton rings grows 
with time during observation. After the paper  [3], it was 
understood that these rings manifest existence and devel-
opment of a cavity under an illuminated spot—the illu-
minated spot releases off a thin surface layer forming a 
spallation shell flying away; see [3–13]. Newton interfer-
ence takes place between the shell and the remnant of the 
target. The shell flies away, distance between the dome-
like shell and target increases resulting in increase of the 
number of Newton rings with time. The shell is very thin 
(of the order of skin-depth ~10–20  nm) layer allowing 
light passes it twice at least. Therefore, we can term this 
phenomenon as nanospallation. Experiments described 
below are based on a unique pump–probe technique with 
an X-ray probe.

Abstract  Spatial structures of ablative mass flow pro-
duced by femtosecond laser pulses are studied. In experi-
ments with a gold film, the Ti:sapp laser pulse having 
a focal size of 100 microns on a target was used, while a 
soft X-ray probe pulse was utilized for diagnostics. The 
experimental data are compared with simulated mass flows 
obtained by two-temperature hydrodynamics and molecu-
lar dynamics methods. Simulation shows evolution of a 
thin surface layer pressurized after electron–ion thermali-
zation, which leads to melting, cavitation and formation of 
spallation liquid layer. The calculated asymptotic surface 
velocity of this layer as a function of fluence is in reason-
ably good agreement with experimental data.

1  Introduction

Lasers with ultrashort pulses have a wide range of well-
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The pump–probe technique with an X-ray probe  [14–
17] is a new approach relative to the pump–probe tech-
nique used in  [2]. The probe pulse is changed from opti-
cal to a soft X-ray (hν = 89 eV, � = 13.9 nm) pulse. This 
method is much more complicated than used in [2], but it 
has important advantages. The advantages of new approach 
are as follows: First, using of a X-ray probe allows to begin 
observation of the Newton rings much earlier because the 
wavelength of X-ray probe is one-two orders of magnitude 
smaller than optical wavelengths. Second, thanks to refrac-
tive shadowgraph, the expansion of plume is followed up 
by X-probe to much larger spatiotemporal scales. In  [2], 
the largest observation times were ~1–10  ns, while the 
new technique continues tracking of flow up to the times 
of the order of microsecond. Late time the X-shadowgraph 
is feasible because X-ray absorption is proportional to the 
mass along a ray path, while optical absorption decreases 
as material fragments into small droplets. Nevertheless, the 
shadowgraph can be obtained also by the optical probe in 
principle, but this was not done up to now.

In [2], an ultrashort laser pulse is divided into two pulses. 
One serves as a pump, while the other passes another opti-
cal path from laser to target and serves as a probe. This 
splitting simplifies a problem of exact synchronization of 
two pulses. In our case, two optical and one soft X-ray 
lasers are employed  [14–17]. Synchronization of them is 
non-trivial problem. Optical Nd-laser creates two coaxial 
plasma columns, they irradiate out a soft X-ray pulse along 
a common axis of columns [14–17]. The X-pulse has small 
angular divergence (few mrad), small frequency spreading 
(��/� < 10−4), and high coherence properties  [14–17]. 
Ti:sapp system is external relative to the system from Nd-
laser and plasma columns. These two systems are syn-
chronized to form a generating and measurement device 
(pump–probe device). Another solved  [14–17] non-trivial 
problem is connected with focusing and construction of the 
X-ray image of an illuminated spot.

There is qualitative understanding of ablation flow 
with dome-like shell (or cupola) and two-phase mixture 
inside  [3–13]. Quantitative description is necessary to 
describe results of the X-probe experiment. In this short 
paper, we present large-scale molecular dynamics (MD) 
simulations of ablation flow starting from temperature pro-
files calculated by hydrodynamics simulations using the 
full-scale two-temperature physics, see details of methods 
in [18–21].

2 � Formulation of the problem

Let us consider action of a near infrared (Ti:sapp) ultra-
short laser pulse (duration τL = 70 fs) on a gold film. The 
detailed two-temperature physics of gold is presented 
in  [21]. Two-temperature hydrodynamics (2T-HD) is used 
to model the earliest two-temperature stage of material in 
order to obtain an initial profile of temperature to continue 
long-time evolution in MD simulation, in the same way as 
see [18–21]. The interatomic EAM potential for gold [22] 
used in our MD simulations is identical to that used in [19]. 
Parameters of MD simulations are summarized in Table 1. 
Results of simulations are shown in Figs. 1, 2, 3, 4, 5, 6, 7 
and 8. In Fig. 1, two maps of central symmetry parameter, 
depending on the local order in atom coordination environ-
ment, are presented.

Fluence distribution along a target surface is assumed 
to be homogeneous, and hydrodynamic motion proceeds 
along the direction x only. Periodic boundary conditions 
in y and z directions are imposed in MD cell. In Fig. 1, 
two maps in the x × y-plane are shown. Direction z is 
perpendicular to the plane of figure. The spatial scale 
Lz along direction z is enough large, see Table 1. It is ≈
40 atomic monolayers in runs 3–6. Therefore, nuclea-
tion of voids (small bubbles) begins and evolves in 3D 
conditions close to real situation in the stretched molten 

Table 1   Parameters of MD simulations

Thickness of film was Lx = 1000 nm in all runs. Here v∞surf is a center of mass velocity of a spallation plate (final velocity); T∞
spall is a “final” 

average temperature inside the spallation plate at a time interval up to ∼10−3 s when radiation losses σSBT4
spall becomes significant, σSB is the 

Stefan–Boltzmann constant; d∞spall is a final average thickness of the spallation plate (the plate undergo weak slowly decaying acoustic oscilla-
tions, see Fig. 5)

Run Ly (nm) Lz (nm) Nat × 106 Fabs (mJ/cm2) tmax (ps) v∞surf (m/s) d∞spall (nm) T∞
spall (kK)

1 11.8 12.1 8.4 118.1 165 0 – –

2 11.8 12.1 8.4 137.4 571 128.5 92 1.48

3 120 16.2 115 136.9 1765 130 80.3 1.7

4 120 16.2 115 192.6 636 315 35 2.61

5 120 16.2 115 201.5 688 321 39 2.68

6 120 16.2 115 295.4 819 540 32 3.47
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gold. The 3D evolution of flow with a two-phase mix-
ture continues up to a stage when the bubble’s diame-
ters grow to the size Lz ∼ 10 nm of MD cell. After that 
the periodical boundary condition along z-axis begins 
to affect on evolution of the foam resulting in gradual 
transition from 3D to 2D-type evolution. Resistance to 
stretching of the 2D foam is weaker than the 3D foam. 
But as it will be shown below (comparisons of small 
and large scales runs 2 and 3) the bubbles are already 
large enough and surface tension effects are rather weak 
at this stage.

3 � Simulation results

Prior to a pump pulse, the equilibrium crystalline fcc 
gold of normal density is prepared in simulation cell. 
Very short lasting pump transfers energy Fabs to electron 
subsystem and is switched off. This transfer initiates two 
processes [18, 21, 23]. There is a process of electron–ion 
relaxation: heating of ions through cooling of electrons, 
see Fig. 2. As a result the local electron Te and ion Ti tem-
peratures converge until the end of two-temperature stage 
at Te ≈ Ti. The second process corresponds to an electron 

614 ps

1418 ps

12
0.

1 
nm

Fig. 1   Maps of central symmetry parameter showing local order 
in ion subsystem in MD simulation with the absorbed fluence 
Fabs = 136.9 mJ/cm2, see run 3 in Table  1. Red colors correspond 
to molten gold, green to solid. Fabs/Fabs|abl = 1.16, v∞

surf
= 130m/s,

T
∞
spall = 1.7 kK, dspall = 80.3 nm. Here Fabs|abl is a thermomechanical 

ablation threshold, which is equal to 118mJ/cm2 according our simu-
lations
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almost separates from a target, Fabs = 136.9mJ/cm2. This instant cor-
responds to the bottom map in Fig. 1. After separation, the momen-
tum and velocity of the center of mass stop their decreasing with 
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heat wave penetrating into the bulk target, which cre-
ates a heated layer with thickness dT. Evolution of pres-
sure profile during the two-temperature stage is shown in 
Fig. 3.

An absorbed fluence Fabs is used as a main parameter 
in our 2T-HD and molecular dynamics (MD) simulations. 

Question about relation between absorbed and incident 
pump fluences is not easy because in our range of rather 
high intensities a linear dependence Fabs = AFinc may not 
be satisfied [24], here A is an absorptance. Linear depend-
ence is satisfied for low laser intensities [24]. In the linear 
case, the absorptance is defined by the Fresnel formulas. 
In 2T-HD simulations, a skin thickness of 15 nm has been 
taken as a penetration depth of photons. A gold target was 
at the room temperature of 293  K before a pump pulse 
arrival to a surface.
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Fig. 5   Temporal behavior of the external surface velocity 
vsurf (t); Fabs = 136.9mJ/cm2. This velocity is defined in Fig.  4. 
Velocity vsurf (t) sharply increases during two-temperature stage and 
achieves its maximum (here we speak about absolute value |vsurf (t)|).  
After that resistance of condensed matter to stretching decreases 
velocity vsurf (t). At the instant marked by the arrow “nucleation” a 
nucleation starts in stretched and molten gold [19]. A weak shock 
named spallation pulse arrives at the external surface in the instant 
when the first minimum of expansion velocity |vsurf (t)| is achieved. 
This shock is sent from a nucleation layer
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Fig. 8   Final temperatures Tspall of the spallation plate as a function 
of normalized fluence Fabs/Fabs|abl. Empty squares correspond to nor-
malization to the ablation threshold Fabs|abl = 118mJ/cm2, for circles 
the normalization is Fabs|abl = 107mJ/cm2. Numbers enumerate MD 
runs presented in Table 1
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Hydrodynamic motion at the two-temperature stage 
smoothly transits to “common” one-temperature hydro-
dynamic motion. Heat conductivity enhanced during the 
two-temperature stage returns to its one-temperature value. 
This value is rather small, therefore fast propagation of heat 
wave during the first few picoseconds is changed to very 
slow (subsonic) propagation lasting nanoseconds up to full 
cooling of surface layer down to room temperatures as a 
result of heat transfer into the bulk of a thick film, in which 
the film thickness is much larger than the heated layer dT.  
Pressurized surface layer created during the fast (super-
sonic) heating releases in the direction toward vacuum as 
well as in opposite direction toward the bulk [19].

The release into the vacuum side accelerates the external 
surface as it is shown in Figs. 4 and 5. Expansion into the vac-
uum decreases local density of gold inside the heated layer 
below its equilibrium density at the zero pressure. The equi-
librium density is defined by the local temperature (expansion 
along an adiabatic curve). Expansion below the equilibrium 
density causes formation of negative pressure field. This field 
acts to decelerate expansion. Therefore, the velocity |vsurf(t)| 
in Fig. 5 begins to decrease after the first maximum.

Figure  5 presents a simulation with fluence above the 
ablation threshold, at which the kinetic energy collected 
during acceleration overcomes the work done by the nega-
tive pressure against expansion of gold. This work continues 
up to the instant of nucleation of voids. During short (few 
picosecond) nucleation stage, the pressure in the nucleation 
layer drops to zero and accumulation of work against expan-
sion stops. But time tsp is necessary to spallation pulse (weak 
shock propagating from nucleation layer) to pass distance dsp 
between the nucleation layer and external surface (the left 
boundary of density profile in Fig. 4). During this propaga-
tion time, the deceleration of surface continues—velocity 
|vsurf(t)| continues to decrease after the instant “nucleation” 
shown in Fig.  5. Thus the velocity |vsurf(t)| drops below 
the velocity of the center of mass of a spallation plate. This 
causes acoustic oscillations, shown in Fig. 5, inside the spal-
lation plate. The period of these oscillations is ≈2 tsp because 
the period is defined by a period which is necessary for the 
double pass of thickness of spallation plate dsp.

The velocity of surface of a spallation plate vsurf(t) and 
the velocity of the center of mass of the plate vcm both are 
shown in Fig. 5. The latter is calculated from total momen-
tum and total mass of the spallation plate. Due to acoustic 
oscillations the velocities vsurf and vcm differ. Compare vsurf 
in Fig. 4 and in Table 1 (run 3, Fabs = 136.9mJ/cm2). Total 
amplitude of the velocity oscillations ≈70 m/s in Fig. 5 is 
significant.

Velocities vsurf and vcm become equal when the oscilla-
tions totally decay later and the spallation plate takes off all 
material ties with a target. Those ties shown in Fig. 1 are 
liquid membranes which put together the spallation plate 

and the target. Let us mention that the oscillations of the 
spallation plate for a thicker plate (~millimeter)  [25–27] 
decay much faster at the same velocities, see examples of a 
rear-side spallation from a solid state matter in [25–27]. In 
Fig.  5, the oscillation amplitude decreases approximately 
by 30  % after five oscillations. If we approximate the 
decay by a geometric progression (an exponential trend) 
1, q, q2, . . . with a step q then in our simulations q ≈ 1.05.  
In the mm-cases  [25–27], this value is higher q  ~  1.5–3. 
Therefore, the decay to 1 % of initial amplitude takes place 
after 4.6/(q − 1) ≈ 102 oscillations in our simulations 
(~10 ns), while in the mm-cases, the ~1–10 oscillations are 
required.

Simulation shown in Fig. 1 is one of the longest in time. 
But even for 1.5 ns after a pump pulse the ties between the 
spallation plate and the bulk target survive. The imprints 
of bubbles adjoining to the spallation plate are clearly seen 
in a density profile in Fig.  4 if we compare the bottom 
panel of Figs. 1 and 4. The first sharp decrease of density 
in Fig. 4 is an image of a left tip of a small bubble inside 
jet—a membrane connecting the spallation plate and the 
target in the bottom panel in Fig. 1. Length of membrane 
is more than 200 nm at the time of 1.5 ns, see Fig. 4. The 
second drop down in Fig. 4 represents the tip of the large 
bubble adjoining to the spallation plate. A small maximum 
near the point x ≈ −90 nm in Fig. 4 is the right tip of the 
small bubble.

Long lasting and spatially large-scale MD simulations 
are necessary to achieve an asymptotic state of flight of 
a spallation plate. Final values of mass, momentum, and 
internal energy (we neglect radiative losses) establish after 
mechanical and thermal separation from target (breaking 
of membranes) and dissipation of kinetic energy of oscil-
lations (this is small addition to internal energy). Only one 
run listed in Table  1 transfers into the state with broken 
membranes and the free spallation plate. This is the run 
2 with the smallest lateral scales. It is much more easy to 
break membrane in the case of small lateral dimensions 
Ly, Lz of MD computational cell, than in the case of simula-
tion with large spatial scales. Runs with large spatial scales 
help to estimate a role of surface tension of membranes in 
the deceleration of a spallation plate. We see that the small 
run 2 and large run 3 in Table 1 differ slightly. This means 
that estimates of asymptotic values for vspall, dspall, and 
Tspall are valid. At a later stage the dynamic influence of 
membranes is very weak and we can neglect the fact that 
they are still unbroken.

4 � Comparison of simulations and experiments

Comparison of results of combined hydrodynamic and 
molecular dynamics simulations with X-probe experiments 

Author's personal copy



418 N. A. Inogamov et al.

1 3

is shown in Fig. 6. The curve v = 536 ln(Finc/Finc|abl)m/s 
presents experimental data with approximately ±5 % error. 
This curve sum up all experimental data obtained thanks 
to Newton rings, X-ray interferometry, and X-ray shadow-
graph measurements. Figure  6 illustrates dependence of 
final velocity |v∞surf | on energy of a pump pulse.

Final velocities |v∞surf | in Fig. 6 taken from the X-probe 
experiment are given as a function of incident fluence 
Finc normalized to the threshold value Finc|abl of incident 
fluence, where the note |abl means that this value cor-
responds to the ablation threshold. Distribution of inci-
dent fluence Finc along an illuminated spot was carefully 
measured in experiments  [14–17]. An absorption coef-
ficients A(Fabs) = 1− R = Fabs/Finc for Ti:sapp laser 
will be measured in near future. It is the significant func-
tion of fluence Finc in our range of fluences. Coefficient A 
in our range of fluences is few times larger than the value 
obtained from Fresnel formula  [28]. This was shown in 
paper  [28] for the case of Cr:forsterite laser. Fresnel for-
mula gives A(Fabs → 0, hν = 1 eV) = 2% for Cr:forsterite 
and A(Fabs → 0, hν = 1.5 eV) = 2.5% for Ti:sapp. While 
A(Fabs ∼ 1J/cm2, hν = 1 eV) ≈ 10%  [23, 28]—we see 
that absorption is five times higher!

Simulation results shown in Fig.  6 by squares are 
plotted as a function of absorbed fluence Fabs normal-
ized to the ablation threshold Fabs|abl for absorbed flu-
ence. We can plot simulation and experimental velocities 
together on Fig.  6, assuming the absorption coefficient 
is a constant in the range of considered fluences. Then 
Fabs/Fabs|abl = Finc/Finc|abl.

According to MD simulations, the ablation threshold for 
absorbed fluence Fabs is located between the first left square 
in Fig. 6 and the second one. The first square corresponds 
to Fabs = 118 mJ/cm2. Final velocity |v∞surf | for this value 
of absorbed fluence equals to zero. The second square cor-
responds to Fabs = 137.4mJ/cm2 and |v∞surf | = 128.5m/s. 
Other parameters are listed in Table 1, this is the run 2. If 
we take the value of 118 mJ/cm2 as an ablation threshold 
on absorbed fluence Fabs|abl for the second square, then the 
ratio Fabs/Fabs|abl is equal to 1.163 for the second square 
as it is plotted in Fig. 6. Of course, the ablation threshold 
of 118 mJ/cm2 is the least possible value for the ablation 
threshold Fabs|abl. In  [19, 23, 28] the ablation threshold 
Fabs|abl for gold was supposed to be ≈130  mJ/cm2. Let 
us mention in this connection that the definition of the 
threshold Fabs|abl with 10  % accuracy is a difficult prob-
lem. Experimentalists define the threshold Finc|abl using 
an incidence fluence. It is not easy problem to measure the 
absorption coefficient at the elevated light fluxes with high 
enough accuracy, and the small inaccuracies affect evalua-
tion of the absorbed fluence.

The range of near threshold fluences from 118 to 
≈ 130mJ/cm2 has to be studied additionally. Because 

small variation of threshold Fabs|abl significantly influences 
results. In Fig. 6, circles present the same simulation results 
as shown by squares but now normalized to another slightly 
different threshold value: 107mJ/cm2 (circles) versus the 
ablation threshold of 118 mJ/cm2 for squares. It is sig-
nificant to emphasize that the near threshold region is not 
very narrow, it covers a few percent range. The nucleation 
threshold (when the first nuclei are formed inside stretched 
molten gold) is few percent below an ablation threshold 
Fabs|abl, see papers [12, 29, 30] about splitting of nucleation 
and ablation thresholds. This splitting signals that resist-
ance of foam to stretching introduces appreciable contribu-
tion to deceleration of spallation plate.

Experimental value for ablation threshold on inci-
dent fluence is Finc|abl = 880mJ/cm2 for X-probe 
experiments. As was said above, a Ti:sapp laser 
� = 800 nm was used as a pump. If we take the 
threshold Fabs|abl = 118 mJ/cm2 then the absorp-
tion coefficient A(� = 800,Finc = 880) = 118/880 
is 13  %. This seems reasonable, because for the 
first harmonics of the Cr:forsterite laser we have 
A(� = 1240,Finc = 1300) = 10%  [23, 28], while the 
Fresnel absorptions are AFres(� = 800) = 2.5% and 
AFres(� = 1240) = 2%—that is the Ti:sapp Fresnel 
absorption is 5/4 higher then in case of Cr:forsterite. Per-
haps the stronger absorption at higher fluences keeps this 
Fresnel ratio.

Figures 6, 7 and 8 present the results concerning asymp-
totic velocity vspall, thickness of spallation plate dspall, and 
temperature of spallation plate Tspall before a radiative 
cooling, see also Table 1. Qualitative behavior of function 
dspall(Fabs) is known  [11, 12, 23]. There are two thresh-
olds. First is the ablation threshold Fabs|abl, at which a spal-
lation plate dspall|abl is formed. Increasing the absorbed 
fluence Fabs in the interval Fabs|abl < Fabs < Fabs|ev 
decreases monotonically the thickness dspall(Fabs). 
Finally, in the point Fabs|ev the spallation plate disappears: 
dspall(Fabs|ev) = 0. Another threshold Fabs|ev is called as 
“evaporation” (ev) threshold in [23] because the spallation 
plate disappears. It is interesting that according to our data 
(see Figs. 6, 7) the spallation plate survives even at the tri-
ple excess above the ablation threshold in gold.

5 � Discussion and conclusion

The main goal of this paper is to check accuracy of com-
bined 2T-HD and molecular dynamics (MD) simulations 
(2T-HD/MD approach) by comparing the 2T-HD/MD 
results with experimental data obtained by recently devel-
oped powerful tool based on X-probe diagnostics [14–17]. 
Sections  2–4 above present simulations and experiments 
and their comparison, see Fig. 6. Simulation and X-probe 
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experiment both have their own shortcomings. Therefore, 
the careful comparison is very valuable because it gives us 
improved and more quantitative conceptions of the laser-
matter interaction. Comparisons also inform us what we 
can do to increase abilities of simulations and experiments. 
From discussions in Sects.  2–4, it follows that measuring 
of absorption coefficient as function of incident fluence 
for working wavelength of a pump laser is necessary for 
accurate quantitative comparison with simulations. Another 
problem that should be solved concerns region of fluences 
near ablation threshold.

Summing up the work done, we have to say that there 
is an encouraging agreement between the theoretical model 
and experiments. This means that we have taken the first 
step in the right direction.
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