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Interfacial mixing and transport are nonequilibrium processes coupling kinetic to macroscopic scales. They
occur in fluids, plasmas, and materials over celestial events to atoms. Grasping their fundamentals can
advance a broad range of disciplines in science, mathematics, and engineering. This paper focuses on the
long-standing classic problem of stability of a phase boundary—a fluid interface that has a mass flow across
it. We briefly review the recent advances in theoretical and experimental studies, develop the general
theoretical framework directly linking the microscopic interfacial transport to the macroscopic flow fields,
discover mechanisms of interface stabilization and destabilization that have not been discussed before for
both inertial and accelerated dynamics, and chart perspectives for future research.
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Interfacial mixing and transport are nonequilibrium
processes coupling kinetic to macroscopic scales (1).
They commonly occur in fluids, plasmas, and materials
over celestial events to atoms (2, 3). Their understand-
ing has crucial importance for science, mathematics,
and engineering as well as for technology, energy,
and environment (1–4). In this paper, we focus on
the long-standing problem of stability of a phase
boundary (i.e., a fluid interface) (5, 6). By developing
the general theoretical framework, we systematically
study the interface stability and the flow fields’ struc-
ture; discover mechanisms of stabilization and desta-
bilization of the inertial and accelerated dynamics that
have not been discussed in the earlier studies (5, 6);
elaborate diagnostics that have not been identified
before and that directly link microscopic transport at
the interface to macroscopic fields in the bulk; and
chart perspectives for future research. For the readers’
convenience, technical details are given in SI Appen-
dix for the corresponding sections.

Hydrodynamic instabilities and interfacial mixing
control a broad range of processes in nature and tech-
nology at astrophysical and molecular scales under
conditions of high- and low-energy densities (1–3). Inertial
confinement fusion and light–material interaction,
supernovae and molecular clouds, stellar convection

and ionospheric plasma, reactive fluids and material
evaporation, fossil fuel production and nanoelectronics—
these are some examples of processes to which non-
equilibrium interfacial dynamics is directly relevant
(7–17). In realistic environments, the material transport
is often characterized by sharply and rapidly chang-
ing flow fields and by relatively small effects of
dissipation and diffusion. This leads to formation of
discontinuities (interfaces) separating the flow non-
uniformities (phases) at continuous (macroscopic) scales
(1–3, 18–20).

For a far-field observer, two types of hydrodynamic
discontinuities are usually considered—a front (with
zero mass transport across it) and an interface (through
which mass can be transported) (5). Their dynamics is
analyzed in a continuous approximation and at length
scales and timescales that are greater than characteris-
tic scales induced by diffusion, dissipation, surface ten-
sion, and other stabilizing effects (5, 6, 11–15). The fluid
phases are broadly defined: These can be distinct ma-
terials or a material with distinct thermodynamic prop-
erties. The material(s) may also experience a phase
transition, a change in chemical composition, be out
of thermodynamic equilibrium, and/or have a nondiffu-
sive interfacial mass transport (1–21). To describe the
multiphase flow, a boundary value problem is solved for
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balancing at a freely evolving discontinuity the fluxes of mass and
normal component of momentum in case of fronts and the fluxes of
mass, momentum, and energy in case of interfaces (5). While solv-
ing the boundary value problem can be a challenge, this level of
abstraction has a number of advantages. On the side of fundamen-
tals, the problem is treated rigorously, powerful theoretical meth-
ods [e.g., group theory (2)] are applied, and essentials of the
dynamics are explored. On the side of applications, this approach
provides reliable macroscopic benchmarks for diagnostics, is free
from adjustable parameters, and has high predictive capability in a
broad parameter regime (2, 3, 5, 20).

Dynamics of fronts separating fluids of different densities is
usually neutrally stable and can be destabilized by accelerations
and shocks, leading to the Rayleigh–Taylor (RT) and Richtmyer–
Meshkov (RM) instabilities, respectively, and the ensuing interfacial
mixing of the fluids (22–26). Rigorous theoretical approaches have
been developed to describe RT and RM flows with account for the
nonlocal anisotropic, heterogeneous, and statistically unsteady
character of their dynamics (2, 3, 27–31). These approaches have
captured the fundamental properties of the instabilities and mixing
(including the multiscale RT/RM dynamics and the order in RT mix-
ing) and have explained the observations (2, 3, 26, 30).

Dynamics of interfaces separating fluids of different densities and
having an interfacial mass flux is a long-standing problem with a
broad range of applications (5). It is studied in plasmas (stability of
ablation fronts in inertial confinement fusion), astrophysics (thermo-
nuclear flashes on the surface of compact stars), material science
(material melting and evaporation), gas dynamics (shocks and explo-
sions), combustion (stability of flames), and industry (scramjets) (6–16,
32–40). The classic theoretical framework for the problem was de-
veloped by Landau (40). It analyzes the dynamics of a discontinuous
interface separating ideal incompressible fluids of different densi-
ties. By balancing at the interface the fluxes of mass and momen-
tum and by implementing a special condition for the perturbed
mass flux, this analysis finds the interface to be unconditionally un-
stable, leading to the Landau–Darrieus instability (LDI) (5, 6, 40).

To connect the classic framework (5, 40) to realistic environ-
ments, several approaches have been developed. In high-energy
density plasmas, significant departures have been detected be-
tween the ablative RT and accelerated Landau–Darrieus (LD) in-
stabilities as well as between the ablative RM and LD instabilities
(32–35, 41–43). It has been recently shown that the interface sta-
bility is sensitive to the flux of energy fluctuations produced by the
perturbed interface (20). In reactive and supercritical fluids, the
stabilizing influences have been found of dissipation, diffusion,
surface tension, and finite interface thickness on the dynamics at
small scales (6, 11, 37–39). Significant progress has been achieved
in the understanding of nonlinear stages of the LDI and in mod-
eling of turbulent combustion (11, 44, 45). These theories and
models have successfully expanded the classic framework (5, 40)
to explain the observations (6, 11, 32–39, 41–46). However, some
fundamental challenges remain.

First, the classic framework (5, 40) describes the evolution of a
phase boundary and is relevant to a range of phenomena far be-
yond processes with gradually changing flow fields (1–16, 32–45).
We still need to understand whether the interface is stable when
the flow quantities experience sharp changes, the effect of dissipa-
tion and diffusion is negligible, and the interfacial transport is non-
diffusive. Second, the flow evolution is usually observed from a far
field and at timescales and length scales that are substantially
greater that those induced by interfacial processes at small scales
(6–20). We still need to quantify what the flow sensitivity is to the
boundary conditions at the interface. Third, direct diagnostics of
various physical effects on dynamics of a multiphase flow require
detailed information of the interface structure. Such information is

often a challenge to obtain directly in experiments and simulations
(6–18, 32–46). We need to better comprehend what the qualitative
and quantitative influence is of the interfacial transport at micro-
scopic scales on volumetric flow fields at macroscopic scales and
elaborate reliable benchmarks. This knowledge is necessary to
identify the mechanisms of stabilization and destabilization of inter-
facial dynamics; to improve the diagnostics of complex processes in
plasmas, fluids, and materials; and to better understand a broad
range of phenomena in nature and technology (1–16).

In this paper, we consider from a far field the inertial and
accelerated dynamics of a hydrodynamic discontinuity that sepa-
rates ideal incompressible fluids of different densities and is
accompanied by the interfacial mass flux. By generalizing the
classic framework (5, 40), we link directly the interface stability
to the flow fields’ structure. Mechanisms are identified of the in-
terface stabilization and destabilization that have not been dis-
cussed before. We find that the inertial dynamics is stable when it
conserves the fluxes of mass, momentum, and energy; the stabi-
lization is due to the inertial effect, leading to small oscillations of
the velocity of the interface as a whole. An energy imbalance can
destabilize the dynamics (20), which is fully consistent with the
classic results (5, 40). In reactive fluids, the energy imbalance can
be due to chemical reactions (4, 46). For accelerated dynamics, the
interface stability is determined by the interplay of the effects of in-
ertia and buoyancy. A hydrodynamic instability is found that has not
been identified in earlier studies (5, 6, 11, 32–46) and that develops
when the gravity value exceeds a threshold. This unstable dynamics
conserves the fluxes of mass, momentum, and energy; has potential
velocity fields in the bulk; and is shear-free at the interface. The
qualitative, quantitative, and formal properties of this instability differ
dramatically from those of the accelerated LDI and the Rayleigh–
Taylor instability (RTI) (5, 22, 23, 40).

Theoretical Approaches
Governing Equations. Dynamics of ideal fluids is governed by
the conservation of mass, momentum, and energy. In an inertial
reference frame,

∂ρ
�
∂t + ∂ρvi=∂xi = 0, ∂ρvi=∂t +

X3

j=1
∂ρvivj

�
∂xj + ∂P=∂xi = 0,

∂E=∂t + ∂ðE +PÞvi=∂xi = 0,
[1a]

where xi are the spatial coordinates with ðx1, x2, x3Þ= ðx, y, zÞ; t
is time; ðρ, v,P,EÞ are the fields of density ρ, velocity v, pressure
P, and energy E = ρðe+ v2=2Þ; and e is the specific internal
energy (5).

We introduce a continuous local scalar function θðx, y, z, tÞ,
with derivatives _θ and ∇θ that exist (the dot denotes partial time
derivative) such that the heavy (light) fluid marked with subscript
hðlÞ is located in the region θ> 0 (θ< 0), and the interface is at θ= 0
(2, 5, 20, 30, 31). We represent the flow fields in the entire domain
as ðρ, v,P,EÞ= ðρ, v, P,EÞh HðθÞ+ ðρ, v,P,EÞl Hð−θÞ, where HðθÞ
is the Heaviside step function. In the bulk of the heavy (light)
fluid, ðρ, v,P,EÞ→ ðρ, v,P,EÞhðlÞ in the governing equations. At
the interface, the balances of fluxes of mass and of normal and
tangential components of momentum and energy lead to the
boundary conditions (5)

h
~j · n

i
= 0,

��
P +

�
~j ·n

�2.
ρ

�
 n
�
= 0,

h�
~j ·n

���
~j · τ

�.
ρ
�
 τ
i
= 0,

h�
~j ·n

��
W +~j

2
.
2ρ2

�i
= 0. [1b]

Here, ½...�= 0 denotes the jump of functions at the interface. n
and τ are the normal and tangential unit vectors, respectively, at
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the interface with n=∇θ=j∇θj,  ðn · τÞ=0; ~j= ρðn _θ=j∇θj+ vÞ is
the mass flux across the moving interface; and W =e+P=ρ
is the specific enthalpy. We use physics definitions of W , e (5,
20). For a spatially extended 2D flow propagating in the z di-
rection, periodic in the x direction, x + λ→ x, and motionless in
the y direction, the conditions at outside boundaries of the
domain are

vhjz→−∞=Vh = ð0,0,VhÞ, vljz→+∞=Vl = ð0,0,VlÞ [1c]

with constant VhðlÞ. The initial conditions (the initial values of
the flow fields) define the characteristic scales of length 1=k
and time 1=kVh of the dynamics (5, 6).

Inertial reference frame can be referred to the reference frame
moving with a constant velocity ~V0 = ð0,0, ~V0Þ of a planar interface
separating the fluids (5, 11). If, in the laboratory reference frame, the
heavy fluid is at rest, then the velocity of planar steady interface is
~V0 =−Vh, with ~V0 = ð0,0,−VhÞ. Velocity ~V of unsteady nonplanar

interface obeys relation ~V ·n=−v · njθ=0+ =−ð~j=ρÞ · n
			
θ=0+

(11, 38).

Linearized Dynamics. We define θ=−z + zpðx, tÞ, slightly perturb
the interface

		 _θ=j∇θj		<< jVj,  j∂zp=∂xj � 1 leading to n=n0 +n1,
 τ= τ0 + τ1 with jn1j<< jn0j,  jτ1j− � jτ0j, and slightly perturb the
flow fields v=V+u,  ~j= J+ j, P =P0 +p,  W = W0 +w with juj
<< jVj,  jjj � jJj, 		p		<< jP0j,  jwj � jW0j.

To the leading order, θ=−z,  n=n0,  τ= τ0 with n0 =
ð0,0,−1Þ,  τ0 = ð1,0,0Þ. In the bulk, the flow fields are uniform:
ðρ,V,P0,W0Þ=ðρ,V,P0,W0ÞhHðθÞ+ðρ,V,P0,W0ÞlHð−θÞ. With mass
flux J=ρV and Jn=J ·n0, boundary conditions at the interface are

½Jn�= 0,

�
P0 + J2n

�
ρ
�
n0



= 0, ½JnððJ · τ0Þ=ρÞτ0�= 0,


Jn
�
W0 + J2

�
2ρ2

�
n0



= 0.

[2a]

For incompressible dynamics, ½Jn�=0, ½P0   n0�=0,  ½JnððJ · τ0Þ=
ρÞτ0�= 0,  ½JnW0�= 0 (5, 6, 40).

To the first order, boundary conditions at the interface are

½jn�= 0,

�
p+ 2Jnjn

�
ρ
�
n0



= 0, ½JnðJ · τ1 + j · τ0Þ=ρ�= 0,


Jn
�
w + ðJ · jÞ2�ρ2�
= 0,

[2b]

with j=ρðu+n0 _θÞ, jn= j·n0, n1=ð∂zp=∂x,0,0Þ, τ1=ð0,0,∂zp=∂xÞ.
For incompressible perturbed dynamics, the enthalpy perturba-
tions are whðlÞ=phðlÞ=ρhðlÞ (5, 20, 40). The governing equations in
the bulk and at the outside boundaries are

∇ · uhðlÞ = 0, _uhðlÞ +
�
VhðlÞ ·∇

�
 uhðlÞ +∇phðlÞ

�
ρhðlÞ = 0,

uhjz→−∞= 0, uljz→+∞= 0.
[2c]

In the laboratory reference frame, the interface velocity ~V is
~V= ~V0 + ~v,  

		~v		 � 		~V0
		, with ~V ·n0 =−ð~V0 + ðu+ _θn0ÞÞ · n0

			
θ=0+

.
To the leading order, ~V= ~V0; the first order perturbation obeys
relation ~v ·n0 =−ðu ·n0 + _θÞ		

θ=0+ (5, 6, 11, 37–40).

Solution Structure.We seek solution such that the velocity of the
heavy fluid is potential in accordance with the Kelvin theorem and
the velocity of the light fluid can be a superposition of the po-
tential and vortical components (5, 6):

uh =∇Φh, ul =∇Φl +∇×Ψl, zp = Ze  ikx+Ωt . [3]

Here, Φh = Φeikx+kz+Ωt ,  Φl = ~Φeikx−kz+Ωt ,  Ψl = ð0, Ψl, 0Þ,  Ψl =
Ψeikx−~kz+Ωt, and the growth rate (eigenvalue) is Ω. This yields
the vortical field length scale ~λ = 2π=~k, ~k = Ω=Vl and the pres-
sure perturbations phðlÞ. In the presence of gravity g directed
from the heavy to the light fluid and with negligible stratifica-
tion, phðlÞ = −ρhðlÞð _ΦhðlÞ + VhðlÞ∂ΦhðlÞ=∂z − gzÞ. We use dimen-
sionless values for the growth rate (eigenvalue) ω = Ω=kVh,
the density ratio R = ρh=ρl with R ≥ 1, and the gravity value
G = g=kV2

h with G ≥ 0. This leads to Vl=Vh = R and ~k=k = ω=R
(5, 11, 20, 38–40). Scale for pressure perturbations is ρhV

2
h .

Fundamental Solutions. The governing equations are reduced to
a linear system Μ  r= 0, where vector r= ðΦh,Φl,Vhzp,ΨlÞΤ and Μ
is 4 × 4 matrix. Its elements are functions on ω,R,G. We find ei-
genvalues ωi by using condition det Μðωi,R,GÞ= 0 and identify
the associated eigenvectors ei by reducing matrix Μ=Μðωi,R,GÞ
to row-echelon form. The solution r is a linear combination of
fundamental solutions ri = riðωi,eiÞ as r=

P
iCiri, where Ci are in-

tegration constants. In nondegenerate case i= 1,2,3,4, there are
four fundamental solutions for four degrees of freedom (47).

Results—Inertial Dynamics
For inertial dynamics, gravity is zero, g= 0,G= 0.

Conservative Dynamics. Conservative dynamics balances the
fluxes of mass, momentum, and energy at the interface. For this
dynamics, the matrix Μ is Μ=M. Its rank is four. Its determinant is
detM= iððR − 1Þ2=RÞðω−RÞðω+RÞðω2 +RÞ, and the eigenvalues
ωi and eigenvectors ei are

ω1ð2Þ =±i
ffiffiffi
R

p
,e1ð2Þ =

�
p, p, 1, 0

�Τ
; ω3 =R,e3 =

�
0, p, 0, 1

�Τ
;

ω4 =−R, e4 =
�
p, p, 0, 1

�Τ
,

[4]

where asterisks mark functions on R (Fig. 1A). There are four
fundamental solutions. The solutions r1ð2Þðω1ð2Þ,e1ð2ÞÞ are sta-
ble, and their eigenvalues are imaginary: ω2 =ωp

1,  e2 =ep
2.

The solution r3ðω3,e3Þ is unstable, Re½ω3�>0, and the solution
r4ðω4,e4Þ is stable, Re½ω4�< 0.

Fundamental solutions r1ð2Þ for conservative dynamics de-
scribe the flow fields that stably oscillate near the interface and
decay away from the interface (20). These solutions are traveling
waves. Their interference produces stable standing waves, par-
ticularly the solution rCD = ðr1 + r2Þ=2. For solution rCDðωCD,eCDÞ,
Fig. 2 illustrates the perturbed velocity vector fields uhðlÞ, the
perturbed velocity streamlines shðlÞ defined as ðdshðlÞ=dtÞ×
uhðlÞ = 0, the contour plot of the perturbed pressure phðlÞ, and the
interface perturbation zp in the ðx, zÞ plane at some density ratio

5
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0 4 8

]Im[ 2

4

3

]Im[ 1
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0
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Fig. 1. Dependence of eigenvalues on density ratio. (A) Conservative
dynamics. (B) Classic Landau dynamics.
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and some instance of time. Fields of pressure phðlÞ are antiphase at
the interface, thus causing stable oscillations in the z direction; the
extrema of phðlÞ correspond to the extrema of zp; they are sym-
metric and span the same range of values R= ðpmin,pmaxÞ with		pl

		
maxðminÞ=

		ph
		
maxðminÞ= 1 and jRlj= jRhj. For solution rCD [travel-

ing waves r1ð2Þ], the vortical filed and vorticity are zero: Ψl = 0,
∇×Ψl = 0,∇×ul = 0 (20).

Fundamental solution r3ðω3, e3Þ, while formally unstable, has
zero fields of the perturbed velocity, pressure, and the interface
perturbations in the entire domain at any time for any integration
constant C3 : uhðlÞ = 0,  phðlÞ = 0,  zp = 0. Fundamental solution
r4ðω4,e4Þmust have the integration constant C4 = 0 to obey at any
time the condition uljz→+∞= 0. This is because its vortical com-
ponent, ∇×Ψl, increases away from the interface. For solutions
r3ð4Þ, the vortical field is Ψl ≠ 0,∇×Ψl ≠ 0, while the vorticity is

∇×ul = 0, with ∇×ul = ð0, ðk2 − ~k
2ÞΨ, 0Þ and ð~k=kÞ2 = ðω=RÞ2 = 1.

Classic LD Dynamics. Classic Landau dynamics balances the
fluxes of mass and normal and tangential components of mo-
mentum and uses the continuity of normal component of the
perturbed velocity [u · n0]= 0 at the interface (5, 40). This leads to

½jn�= 0,

�
p+ 2Jnjn

�
ρ
�
  n0



= 0, ½JnðJ · τ1 + j · τ0Þ=ρ�= 0,

½u ·n0�= 0.
[5a]

For classic Landau system, the matrix Μ is Μ= L. Its rank is
four. Its determinant is detL= iððR−1Þ=RÞðω−RÞððR+1Þω2+
2Rω− ðR−1ÞRÞ; the eigenvalues ωi and eigenvectors ei are

ω1ð2Þ =
�
−R ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 +R2 −RÞ

q ��
ð1+RÞ, e1ð2Þ =

�
p, p, p, 1

�Τ
;

ω3 =R, e3 =
�
0, p, 0,1

�Τ
,

[5b]

where asterisks mark functions of R (Fig. 1B). There are three
fundamental solutions: i= 1,2,3. Solution r1ðω1,e1Þ is unsta-
ble, Re½ω1�>0; solution r2ðω2,e2Þ is stable; and solution

r3ðω3,e3Þ is unstable, Re½ω3�>0, and is identical to that in
the conservative dynamics.

Fundamental solution r1ðω1,e1Þ for classic Landau system,
hereafter rLDðωLD,eLDÞ, corresponds to the LDI (5, 40). This solu-
tion is a physical solution satisfying the assigned boundary con-
ditions. For solution rLD, the vortical and potential components of
the velocities and the interface perturbation are strongly coupled
(40). The perturbed velocity fields uhðlÞ and the perturbed velocity
streamlines shðlÞ illustrate the formation of vortical structures near
the interface and in the bulk (Fig. 3). For solution rLD, the vortical
component ∇×Ψl and the vorticity ∇×ul, while increasing in

time, as ∼ eωLDðkVhÞt, decay away from the interface, as ∼ e−~kz (5, 6,
40). The length scale of the vortical field is large, ~k=k =ωLD=

R = ð−R +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−R +R2 +R3

p
Þ=Rð1+RÞ with ~k=k ∼ ðR − 1Þ=2→ 0 for

R→ 1+ and ~k=k ∼R−1=2 → 0 for R→∞ (20). The maximum value
~k=k is achieved at R = 2+

ffiffiffi
5

p
≈ 4.24. The contribution of the vor-

tical field to the dynamics is significant for fluids with very different
densities, R→∞, and is small for fluids with similar densities, R→ 1+.
Pressure fields phðlÞ are in phase and equal one another at the in-
terface; they are in antiphase with the interface perturbation. Pressure
fields phðlÞ are symmetric and span the same range of values
R= ðpmin,pmaxÞ with

		pl
		
maxðminÞ=

		ph
		
maxðminÞ= 1 and jRlj= jRhj.

For fundamental solution r2ðω2,e2Þ, the interface perturbation,
and the vortical and potential components of the velocity field are
also coupled. For this solution, we must set the integration con-
stant zero C2 = 0 to obey at any time the condition uljz→+∞= 0.
Fundamental solution r3ðω3,e3Þ is identical to that in the conser-
vative dynamics and has zero fields for any C3.

The classic Landau dynamics has a smaller number of funda-
mental solutions than the degrees of freedom. Eliminating this
degeneracy may lead to appearance of a (fourth) neutrally stable
solution with a seed vortical field triggering the LDI.

Comparative Study. Conservative dynamics rCDðωCD, eCDÞ and
LD dynamics rLDðωLD,eLDÞ have distinct quantitative, qualita-
tive, and formal properties. The dynamics rCD is stable, and the
dynamics rLD is unstable. For rCD, the velocity fields are potential; for
rLD, the potential and vortical velocity components are strongly
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Fig. 2. Flow fields’ structure for the inertial conservative dynamics.
Plots of real parts of the interface perturbation, the perturbed
velocity vector fields, and the perturbed velocity streamlines and the
contour plot of the perturbed pressure with red (blue) for positive
(negative) values.
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Fig. 3. Flow fields’ structure for the classic Landau dynamics. Plots of
real parts of the interface perturbation, the perturbed velocity vector
fields, and the perturbed velocity streamlines and the contour plot of
the perturbed pressure with red (blue) for positive (negative) values.
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coupled. Solution rCD conserves mass, momentum, and energy
at the interface; solution rLDG conserves mass and momentum
and has zero perturbed mass flux at the interface. The conser-
vative dynamics is nondegenerate; the LD dynamics is de-
generate (Figs. 1 and 3).

Mechanisms of Stabilization and Destabilization. To better
understand themechanism(s) of the interface (de-)stabilization, we
consider the interface velocity (11, 38–40). In the laboratory ref-
erence frame, the interface velocity is ~V= ~V0 + ~v, with ~v · n0 =
−ðu ·n0 + _θÞ		

θ=0+ . For dynamics rCD, the values are u · n0jθ=0+ ∼

e±i
ffiffiffi
R

p
t ,   _θ

		
θ=0+ ∼ e±i

ffiffiffi
R

p
t, leading to ðu · n0 + _θÞ		

θ=0+ ∼ e±i
ffiffiffi
R

p
t and

~v · n0 ∼ e±i
ffiffiffi
R

p
t. Thus, the interface velocity experiences small stable

oscillations near the steady value ~V0,  ð~V− ~V0Þ ·n0 ∼ e±i
ffiffiffi
R

p
  t.

This suggests the inertial effect as the stabilization mechanism
of the conservative dynamics rCD. Indeed, when the interface is
slightly perturbed, the parcels of the heavy fluid and the light fluid
follow the interface perturbation, causing the change of mo-
mentum and energy of the fluid system. However, the dynamics is
inertial. To conserve themomentum and energy, the interface as a
whole slightly changes its velocity. Thus, the reactive force occurs
and stabilizes the dynamics.

For the LD dynamics rLD, the interface velocity is constant,
~V= ~V0, as it is postulated in the boundary condition [u · n0]= 0,
leading to ðu ·n0 + _θÞ		

θ=0+ = 0,  ~V= 0 (5, 40). Since in classic LD
dynamics, mass and momentum are conserved, for capturing the
destabilization mechanism, we consider how the condition
[u · n0]= 0 may influence the energy transport.

Remarkably, for ideal incompressible fluids, the solution rLD is
incompatible with the condition for energy balance at the per-
turbed interface (20). Indeed, by substituting [u ·n]= 0 ðjn = 0Þ in
the condition for energy balance ½Jnðw + ðJ · jÞ=ρ2Þ�= 0, one ob-
tains ½Jnðw + ðJ · jÞ=ρ2Þ�= ½Jnw�= 0 and with ½Jn�= 0, reduces it
further to ½w�= 0 (20).

The enthalpy perturbations are w =p=ρ+ δ e, where δ e are the
fluctuations of internal energy (in physics sense) (5, 20). In ideal
incompressible fluids, free of energy sources, these fluctuations
are zero, δ  e= 0, because _e= 0,  ∇e= 0. Thus, with w =p=ρ and
with ρh ≠ ρl, the condition for energy balance, ½w�= 0, contradicts
the condition for momentum balance, ½p�= 0. We see that, for
ideal incompressible fluids, classic Landau dynamics, while con-
serving enthalpy (in physics sense) to the leading order, ½W0�= 0,
requires energy imbalance at the interface to the first order. This
imbalance is induced by the first-order enthalpy perturbations,
½w�= ½p=ρ�. This is the work done by the fluid when a parcel of fluid
of a unit mass expands its volume from ρ−1h to ρ−1l under pressure p.

In realistic fluids, this energy imbalance can be induced by
energy fluctuations. The effect can be self-consistently derived
from entropy conditions with account for chemical reactions. In
ideal fluids, to quantify the effect of energy imbalance on the
interface stability, we can introduce an additional artificial en-
ergy flux; study a transition from stable to unstable dynamics
with increase of the fluctuations’ strength; and find that,
for strong (weak) fluctuations, the eigenvalues and the flow
fields are similar to those in the classic Landau (conservative)
dynamics (20) (SI Appendix).

Chemistry-Induced Instabilities. In reactive fluids, it is generally
well-understood that chemically reactive systems can be hydrody-
namically unstable. However, it is a challenge to construct a model
experiment or a simulation that cleanly displays significant chemical
reaction instability at a simple interface. The paper in ref. 46 reports
atomistic simulations for studying the energy transport in a reactive

system and the effect of chemical reaction on the interface stability.
Additional investigations are required to fully understand the
properties of chemistry-induced instabilities at atomistic and
continuous scales.

Results—Accelerated Dynamics
For accelerated dynamics, gravity g is directed from the heavy to
the light fluid, G> 0.

Accelerated Conservative Dynamics. For conservative dynamics
balancing the mass, momentum, and energy at the interface,
matrix Μ is Μ=MG, its determinant is det MG = iððR − 1Þ2=
RÞðω−RÞðω+RÞðω2 +Rð1−G=Gcr ÞÞ, and the eigenvalues ωi and
eigenvectors ei are

ω1ð2Þ =±i
ffiffiffi
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−G=Gcr

p
, e1ð2Þ =

�
p, p, 1, 0

�Τ
; ω3 =R,e3 =�

0, p , 0, 1
�Τ
; ω4 =−R,e4 =

�
p, p, 0, 1

�Τ
, [6]

where Gcr =RðR −1Þ=ðR +1Þ and asterisks mark functions of
R,G (Fig. 4A).

Solutions r1ðω1,e1Þ and r2ðω2, e2Þ depend on the value G.
For G<Gcr, the eigenvalues are imaginary, and the solutions
r1ð2Þ are stable, ω2 =ωp

1, e2 =ep
2. Solutions r1ð2Þ are traveling waves;

their interference results in the appearance of stable standing
waves. For G>Gcr, ω1 =

ffiffiffi
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Gcr − 1

p
, and Re½ω1�> 0, funda-

mental solution r1ðω1,e1Þ, hereafter rCDGðωCDG, eCDGÞ, is un-
stable and describes exponential growth of the interface
perturbations. For G>Gcr, ω2 =−

ffiffiffi
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Gcr − 1

p
, and Re½ω2�< 0,

solution r2 is stable and describes exponential decay of the
perturbations. The critical value Gcr =RðR − 1Þ=ðR + 1Þ ap-
proaches Gcr →R for R→∞ and Gcr → ðR − 1Þ=2 for R→ 1+. So-
lutions r3ð4Þðω3ð4Þ,e3ð4ÞÞ do not depend on the value of G and
are the same as the corresponding solutions in the inertial dy-
namics. Solution r3 is unstable, Re½ω3�> 0, and solution r4 is
stable, Re½ω4�< 0.

For accelerated conservative dynamics rCDGðωCDG,eCDGÞ, the
velocity fields are potential in the stable, G<Gcr, and unstable,
G>Gcr, regimes. For this solution, the transports of mass, mo-
mentum, and energy are balanced at the interface, the condi-
tions at the outside boundaries are obeyed, and the vortical field
and vorticity are zero, Ψl = 0,  ∇×Ψl = 0,  ∇×ul = 0. In the stable
regime G<Gcr, the fields of velocity, stream lines, and pressure
of solution rCDG have features similar to those of the inertial
dynamics rCD. In the unstable regime, G>Gcr, the fields of
pressure phðlÞ are in phase with one another and with the in-
terface perturbation. However, they are no longer symmetric;
their values differ significantly and span distinct range R=
ðpmin,pmaxÞ with

		pl
		
maxðminÞ=

		ph
		
maxðminÞ<< 1 and jRlj<< jRhj. This

illustrates the formation of a periodic (finger-type) structure of
bubbles and spikes, with a bubble (spike) being a portion
of the heavy (light) fluid penetrating the light (heavy) fluid
(Fig. 5).

For solution r2, the velocity fields are qualitatively similar to
those for rCDG. For solution r3, the fields of velocity, pressure, and
interface perturbation are zero for any constant C3; for solution r4,
the integration constant must be zero C4 = 0 to obey conditions at
the domain boundaries.

Accelerated LD Dynamics. For accelerated LDI, the dynamics
balances the fluxes of mass, normal and tangential compo-
nents of momentum, and the normal component of the per-
turbed velocity [u ·n0]= 0 (5, 6). This leads to matrix Μ= LG with
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det LG = iððR − 1Þ=RÞðω−RÞððR + 1Þω2 + 2Rω − ðR − 1ÞðR +GÞÞ;
the eigenvalues ωi and eigenvectors ei are

ω1ð2Þ =
�
−R ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 +R2 −RÞ+GðR2 − 1Þ

q ��
ð1+RÞ,  e1ð2Þ =

�
p, p, p, 1

�Τ
; ω3 =R,e3 =

�
0, p, 0, 1

�Τ
, [7]

where asterisks mark functions of R,G (Fig. 4B). Solutions
r1ð2Þðω1ð2Þ,e1ð2ÞÞ depend on G. Solution r3ðω3,e3Þ is indepen-
dent of G and is identical to that in the inertial dynamics.

Fundamental solution r1ðω1, e1Þ, hereafter rLDGðωLDG,eLDGÞ,
corresponds to the LDI in gravity field (Fig. 6). It is unstable for any
G> 0 (5, 6). For solution rLDG, the transports of mass, momentum,
and perturbed mass flux are balanced at the interface; the con-
ditions at the outside boundaries are obeyed, the potential and
vortical components of the velocities and the interface perturba-
tion are coupled, and the vortical field length scale is
~k = kð−R +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 +R2 −RÞ+GðR2 − 1Þ

p
Þ=ðRð1+RÞÞ. For large G,

the pressure fields phðlÞ are not symmetric and span a significantly

distinct range of values R= ðpmin,pmaxÞ with
		pl

		
maxðminÞ=		ph

		
maxðminÞ< < 1 and jRlj � jRhj. They are in phase with one an-

other and with the interface perturbation zp.
For solution r2, the interface perturbation and the vorti-

cal and potential components of velocities are also coupled.
For this solution, we must set the constant C2 = 0 to obey at any time
the condition uljz→+∞= 0. Solution r3 has zero fields in the entire do-
main at any time for any C3 as in the inertial dynamics.

Accelerated RT Dynamics. For the RTI (22, 23), there is no mass
flux at the interface, and there is no fluid motion far from the in-
terface. This leads to the boundary conditions

h
~jn
i
= 0, ½Pn�= 0, ½v ·n�= 0, vhjz→−∞= ð0,0,0Þ,

vljz→+∞= ð0,0,0Þ,
[8a]

with ½v · τ�= any,  ½W �= any (5). We slightly perturb the inter-
face θ=−z + zpðx, tÞ,  zp =Ze  ikx+Ω t, with

		 _θ=j∇θj		< <
ffiffiffiffiffiffiffiffi
g=k

p
,

j∂zp=∂xj � 1. We slightly perturb the velocities with potential
fields vh =∇Φh,  Φh =Φeikx+kz+Ωt and vl =∇Φl,  Φl = ~Φeikx−kz+Ωt,
with jvj � ffiffiffiffiffiffiffiffi

g=k
p

and perturb the fluid pressure P =P0 +p,
 
		p		 � jP0j, with phðlÞ =−ρhðlÞð _ΦhðlÞ + VhðlÞ∂ΦhðlÞ=∂z −gzÞ. The
governing equations are reduced to a linear system Μ  r=0,
where vector is r= ðΦh,Φl,VhzpÞΤ and the 3 × 3 matrix is
Μ=Μðω,R,GÞ. The solution is r=

P
iCiri, where ri = riðωi,eiÞ

are fundamental solutions, Ci are constants, and i= 1,2,3 in
the nondegenerate case (47). For RT dynamics, matrix Μ

is Μ=TG. Its determinant is det  TG=ðR−1ÞððR+1Þω2−
GðR−1ÞÞ, and ωi and ei are

ω1ð2Þ =±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðR − 1Þ=ðR + 1Þ

p
,  e1ð2Þ =

�
p, p, 1

�Τ
, [8b]

where asterisks mark functions of R,G. Note that, while in RTI,
the length scale and timescale are 1=k and 1=

ffiffiffiffiffiffi
gk

p
, to conduct

a comparative study, we scale the time with 1=kVh, where Vh is
now understood as some velocity scale, leading to g=G  ðkV2

h Þ
as before.

For any G> 0, fundamental solution r1ðω1, e1Þ, hereafter
rRT ðωRT , eRT Þ, is unstable and corresponds to the RTI. Its velocity
fields are potential, ∇× vhðlÞ = 0, and have shear at the interface.
Fundamental solution r2ðω2, e2Þ is stable and has potential ve-
locity fields. The RT dynamics is degenerate (two fundamental
solutions, three degrees of freedom). Eliminating this degeneracy
can produce a neutrally stable solution with a “seed” velocity
shear at the fluid interface.

Comparative Study. While large gravity values destabilize the
interface, the accelerated conservative dynamics rCDGðωCDG,
eCDGÞ, the accelerated LD dynamics rLDGðωLDG,eLDGÞ, and the RT
dynamics rRT ðωRT ,eRT Þ have distinct quantitative, qualitative, and
formal properties.

For solution rCDG, the instability develops only when the
gravity value exceeds a threshold, G>Gcr, whereas for solutions
rLDG and rRT, the dynamics is unstable for anyG> 0. ForG→ 0, the
dynamics rCDG is stable, ωCDG → i

ffiffiffi
R

p
; the dynamics rRT is neutrally

stable, ωRT → 0; and the dynamics rLDG is unstable, ωLDG →

ð−R +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 +R2 −R

p
Þ=ð1+RÞ. For G→∞, the dynamics rCDG,

 rLDG,  rRT is unstable, and growth rates are ωCDG →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RG=Gcr

p
,

 ωRT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðR − 1Þ=ðR + 1Þp

,  ωLDG →ωRT. There exists a special grav-
ity value of G=Gp at which all of the growth rates are equal:
ωCDG =ωLDG =ωRT. This is Gp = ðR2 − 1Þ=4, Gp >Gcr. Solution rCDG
has the smallest growth rate for Gcr <G<Gp, ωCDG <ωRT <ωLDG, and
the largest growth rate for G>Gp, ωCDG >ωRT >ωLDG. For G→∞,
the accelerated conservative dynamics has the largest growth rate,
with ωCDG=ωRTðLDGÞ → ðR + 1Þ=ðR − 1Þ (Fig. 7).
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Solutions rCDG,  rLDG,  rRT have distinct flow fields in the bulk
and at the interface. In the bulk, solutions rCDG,  rRT have potential
velocity fields, whereas for solution rLDG, the potential and vor-
tical components of the velocity fields are strongly coupled.
Solutions rCDG,  rLDG are shear-free at the interface, whereas
solution rRT has the interfacial shear leading to the development
of Kelvin–Helmholtz instability and the interfacial vortical struc-
tures (22–31).

Solutions rCDG,  rLDG,  rRT have distinct physical and formal
properties. At the interface, solution rCDG conserves mass,
momentum, and energy; solution rLDG conserves mass, mo-
mentum, and perturbed mass flux; and solution rRT conserves
mass and normal component of momentum. Conservative dy-
namics is nondegenerate, the LD dynamics is degenerate, and
the RT dynamics is degenerate. The degeneracy indicates a
singular and ill-posed character of the LDI and the RTI (2, 3).

Mechanisms of Stabilization and Destabilization. The stabili-
zation mechanism of the accelerated conservative dynamics is
revealed by the qualitative dependence of the solution rCDG on
the gravity value. At vanishing gravity G→ 0, the accelerated dy-
namics becomes inertial, rCDG → rCD, and stable, ωCDG →ωCD, with
ωCD = i

ffiffiffi
R

p
. The dynamics is stabilized by the inertial effects. For

small gravity values,G<Gcr, the inertial effects dominate, and the
conservative dynamics is stable. For large gravity values, G>Gcr,
the buoyancy effects dominate and destabilize the conservative
dynamics.

While velocity fields in accelerated conservative dynamics
rCDG are potential in the bulk, this instability is distinct from the
RTI. For any gravity value, G> 0, the RT dynamics has no fluid
motion away from the interface; it has zero mass flux and has shear
at the interface; it is neutrally stable ωRT → 0 for G→ 0. In
accelerated conservative dynamics rCDG, there are mass flux across
the interface, uniform motions of the fluids far from the interface,
and zero shear at the interface; yet, this instability is distinct from the
LDI. The LDI has vortical fields; it is unstable ωLDG →ωLD for G→ 0.

These results are consistent with the dependence of the in-
terface velocity on the gravity value. In the laboratory reference

frame, the interface velocity is ~V= ~V0 + ~v,  ~v ·n0 =−ðuhn0 + _θÞ 		
θ=0+ .

For accelerated conservative dynamics rCDG, in the stable regime,
G∈ ½0,Gcr Þ, the interface velocity experiences stable oscillations near
the steady value ~V0 with ð~V− ~V0Þ · n0 = ðuhn0 + _θÞ 		

θ=0+ ∼ eijωCDG jt.
In the unstable regime, G>Gcr, the velocity of the interface as a
whole increases with time. In the linear regime, this increase is
exponential, ðuhn0 + _θÞ		

θ=0+ ∼ eωCDGt. In the advanced stages, we
may expect it to be a power law function of time (2, 3). For RT
dynamics rRT, the velocity of the interface as a whole is zero in the
linear regime and is a power law function of time, ∼gt2, in the
advanced mixing regime (2, 3, 26, 30). For the accelerated LD dy-
namics rLDG, the interface velocity is constant, ~V= ~V0 (5, 6).

For large accelerations, G>Gp, the unstable dynamics
rCDGðLDG,RTÞ transforms the interface to a periodic structure of
bubbles and spikes: The heavy (light) fluid is pushed into the light
(heavy) fluid in spikes (bubbles) by the difference of the higher
pressure in the heavy (light) fluid and the lower pressure in the
light (heavy) fluid. The counterflows develop with fingers of
“heavy spikes” and “light bubbles,” in agreement with observa-
tions (Figs. 5 and 6) (2, 3, 26, 30).

In dimensional units, for given values Vh,g, ρh, ρl for the
accelerated conservative dynamics, we further find the critical
wave vector kcr = ðg=V 2

h Þðρl=ρhÞðρh + ρlÞ=ðρh − ρlÞ at which the in-
terface is stabilized, ΩCDGjk=kcr = 0, and the maximum wave vector
kmax = kcr=2 at which the unstable interface has the fastest growth,
∂ΩCDG=∂kjk=kmax

= 0,  ∂2ΩCDG=∂k2
		
k=kmax

< 0.

Effect of Surface Tension. Our general framework enables the
systematic study of interfacial dynamics influenced by surface ten-
sion, thermal conductivity, compressibility, viscosity, mass ablation,
and flow geometry and dimensionality, upon the corresponding
modification of the governing equations. Here we briefly consider
the effect of surface tension. It is important in multiphase flows, and
is straightforward to account for. The outline of results is given in the
SI Appendix. Note that stabilizations of the conservative dynamics by
the inertial effect and by the surface tension are distinct mechanisms.

Discussion
Interfacial mixing is a nonequilibrium process coupling kinetic
to macroscopic scales (1). Grasping fundamentals of the interfacial
dynamics is crucial for science, mathematics, and engineering (2–6).
This work is focused on the classic problem of stability of a fluid
interface (phase boundary) that has a mass flux across it (5, 6, 40).

Fig. 7. Dependence of the growth rates of the instabilities on
gravity value.
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We have briefly reviewed the recent advances in theoretical and
experimental studies, have developed the general theoretical
framework to systematically study the interface stability and the
flow fields, and have identified the mechanisms of interface
stabilization and destabilization in the inertial and accelerated
flows that have not been discussed in earlier studies (5, 6, 32–45)
(Figs. 1–7).

Our theoretical framework is consistent with and generalizes
the classic approach (5, 40); directly links the flow fields to the
boundary conditions at the interface; and assumes sharp changes
of the flow quantities at the interface and negligible effects of
dissipation, diffusion, compressibility, and interface thickness. By
examining the interface from a far field in a sample case of a 2D
flow, we found extreme sensitivity of the dynamics to the in-
terfacial boundary conditions and discovered properties that have
not been identified before (Figs. 1–7).

The inertial conservative dynamics is stable and is stabilized by
the reactive force. The flow is a superposition of two motions—the
background motion of the fluids following the interface with
slightly oscillating velocity and stable oscillations of the interface
perturbations (Figs. 1–3). For classic Landau dynamics, the in-
terface velocity is constant, the reactive force is absent, and the
dynamics is unstable. An energy imbalance may enable the LDI to
occur. In reactive fluids, the energy imbalance can be due to
chemical reactions (46). The LD unstable dynamics is a superpo-
sition of two motions—the background motion of the fluids fol-
lowing the interface with the constant velocity and the growth of
the interface perturbations (Figs. 1–3).

For accelerated conservative dynamics, the flow stability depends
on the interplay of inertia and buoyancy (i.e., reactive force and
gravity) (Figs. 4–7). For gravity values smaller than a threshold, the
dynamics is stabilized by inertial effect and reactive force. For large
gravity values, buoyancy effect dominates, and gravity destabilizes
the flow. The dynamics is a superposition of two motions. Below the
threshold, these are the background motion of the fluids following
the interface with slightly oscillating velocity and stable oscillations
of the interface perturbations. Above the threshold, the interface
perturbations grow and therefore, it is the interface velocity. For
strong accelerations, this instability grows faster than the accelerated
LDI and RTI; for weak acceleration, the LDI has the largest growth rate.

For unstable conservative dynamics in a gravity field, the flow
is potential in the fluids’ bulk, similar to the RTI and in contrast to
the accelerated LDI; it is shear-free at the interface, similar to the
LDI and in contrast to the RTI. The conservative dynamics is non-
degenerate in contrast to the LDI and the RTI. The degeneracy
suggests a singular (ill-posed) character of the RT and LD dynamics
requiring the (neutrally stable) seed vortical field in the bulk for the
LDI or the seed interfacial shear for the RTI.

It is commonly believed that an interface separating nearly
ideal incompressible fluids and having an interfacial mass flux is
subject to the LDI at large scales and that, in realistic environment,
the LDI is a challenge to implement, because the effects of dis-
sipation, diffusion, and finite interface thickness stabilize the small
scales (5, 6, 11, 12, 37–39). Our far-field analysis is fully consistent
with these results: For fluids with similar densities, R ∼Oð1Þ, the
contribution of vortical fields to the dynamics is small, and the
fluxes induced in realistic fluids by the stabilizing effects may
dominate the dynamics and define the interface stability (5, 6, 11,
20, 37–39, 44, 45). For fluids with very different densities, R >> 1, a
more careful consideration is required (2–4, 20). Our analysis
yields the qualitative and quantitative characteristics of the
dynamics that have not been measured before and that can be
diagnosed (20, 46) (Eqs. 1–8, Figs. 1–7, and SI Appendix).

One such experiment can be a study of the dynamics of fluids
with very different densities, with diagnostics of the flow fields near
the interface and in the fluids’ bulk, and with the measurements of
the interface evolution, including the interface velocity as a whole
and the interface perturbation growth rate. By comparing the ob-
servations with our benchmarks, one can further identify the fun-
damentals of the interfacial dynamics in realistic environments and
elaborate approaches for the flow control (Figs. 1–7) (1–3, 20).

Several questions may frame these perspective studies (20,
46). Can the LDI unconditionally develop at the large scales
(20) (Eqs. 4 and 5 and Figs. 1–3)? How can the dynamics be
stabilized—by inertial effect, by dissipation and diffusion, or by
their combination? How strong should energy fluctuations be
to destabilize the flow (20) (SI Appendix)? Can these fluctuations
be induced by chemical reactions (46)? If so, how are the
properties of chemistry-induced instabilities compared with those
of the LDI (46)?

For accelerated dynamics, our results suggest that the con-
servative dynamics is driven by the interplay of the effects of in-
ertia and buoyancy (reactive force and gravity). These results
are consistent with recent studies of ablative Rayleigh–Taylor
and Richtmyer–Meshkov (RMI) instabilities in compressible fluids
(32–35, 41–43). Our analysis yields the properties of the
accelerated interfacial dynamics that have not been discussed
before (Eq. 6 and Figs. 4–7).

According to our results, the conservative dynamics can be stable
even for ideal incompressible fluids at any density ratio when the
gravity value is smaller than a threshold (Fig. 7). In the stable regime,
the interface velocity experiences stable oscillations, whereas in the
unstable regime, along with the growth of interface perturbations,
the interface velocity may also increase. The latter qualitatively
explains the intensive material mixing observed in experiments in
inertial confinement fusion (7, 33, 35). Thus, our analysis can self-
consistently resolve this long-standing puzzle. Note that our
conservative dynamics instability is the fastest (compared with the
LDI and the RTI) in the extreme regime of strong accelerations that
are common in high-energy density plasmas (32–34).

For our accelerated conservative dynamics with the growth rate
ΩCDG = kVh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρh=ρlÞðg=gcr − 1Þp
, experiments and simulations can

be conducted on the basis of our results. For given g,Vh, ðρh=ρlÞ, by
varying k, one may observe the interface stabilization at kcr and the
fastest instability growth at kmax = kcr=2. For given Vh, ðρh=ρlÞ, k, by
varying gravity g, one may observe stable oscillations of the in-
terface with ΩCDG = ikVh

ffiffiffiffiffiffiffiffiffiffiffi
ρh=ρl

p
for g � gcr and unstable growth

of the perturbations with ΩCDG = kVh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρh=ρlÞg=gcr

p
for g>>gcr.

For given g, ðρh=ρlÞ, k, by varying Vh, one may observe stable
oscillations for large Vh and unstable perturbation growth for
small Vh.

Existing experimental and numerical studies of the interface
stability are focused on the growth of the perturbation amplitude
(5–7, 11, 33–39). Our analysis derives the amplitude growth rate and
finds that the dynamics is highly sensitive to interfacial boundary
conditions. According to our theory, by measuring at macroscopic
scales the flow fields in the bulk and at the interface, one can
capture the transport properties at microscopic scales at the
interface (Figs. 1–7). This information is especially important for
systems where experimental data are a challenge to obtain (7, 8,
13, 15, 16, 32–39).

Our approach can systematically incorporate the effects of dis-
sipation, diffusion, compressibility, radiation transport, stratification,
finite interface thickness, and nonlocal forces that are important
for material dynamics in realistic environments (5, 7–16). According
to our results, at small length scales, the interface dynamics can be
stabilized by surface tension that influences critical (maximum) wave
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vector kcr (kmax) for given values ofg,Vh, σ, ρh, ρh=ρl. Our approach can
be applied to analyze the interplay of interface stability with structure of
flow fields at various experimental parameters. It substantiates per-
spectives of development of a unified theoretical framework for
studies of interfacial dynamics in a broad range of phenomena, in-
cluding D’yakov–Kontorovich instability in shocks (48, 49), ablative
RTI and RMI in fusion plasmas (7, 32–35), deflagration-to-

detonation transition in supernova (8, 9, 36), and dynamics of
reactive and supercritical fluids (6, 20, 37, 46).
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