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An ultrashort laser pulse incident on a solid target
creates a two�temperature (2T) medium (Te � Ti) with
a solid�state density [1–4]. The difference of the elec�
tron temperature Te from Ti is due to the fact that the
duration of the ultrashort laser pulse τL is shorter the
electron–ion relaxation time teq in which the temper�
atures Te and Ti become equal to each other [1, 5–7].
At absorbed energies Fabs about and above the thermo�
mechanical ablation threshold (Fabs |abl ~ 100 mJ/cm2)
[8–11], the number of electrons excited above the
Fermi level is large, the electron–electron (e–e) colli�
sion frequency νee is high, e–e thermalization occurs
rapidly, and the Fermi function f(ε; Te, μ) = [1 +

]–1 with the chemical potential μ(Te) can be
used as the electron distribution function even at times
τL ~ 10–100 fs. The calculations reported in [12] indi�
cate that the thermodynamic description of the elec�
tron subsystem is applicable when the energies Fabs |abl

are higher than ~1 mJ/cm2 ~ 1% of the threshold
Fabs |abl.

1. ROLES OF s AND d ELECTRONS

New data on the 2T thermal conductivity κ2T =
κ(Ti, Te) and the electron–ion heat transfer coeffi�
cient α of noble and transition d metals Au, Ni, Fe,
and Ta are obtained and compared with the previously
calculated functions κ2T [13] and α [2, 4]. The calcu�
lations in [2, 4, 13] were performed within a similar
method, but only for a simple case of a single�band

e
ε μ–( )/kBTe

metal (e.g., Al). In addition, our results are compared
to the data on α for d metals from [3]. The approach
used in this work significantly differs from the
approach that was used in [3, 14]. The approach [3,
14] is based on the simplifying assumption of the
equality of the matrix elements for the s and d bands
[14].

We assume that the electron subsystem consists of s
and d electrons (in this case, s electrons are the gener�
alized name for s and p electrons if the latter exist, e.g.,
for the case Al 3s23p1). The electron spectrum is
approximated by parabolas for s and d electrons:

(1)

Here, nat and ns are the atomic and s electron densities,
respectively, and μ0 ≡ μ(0) is the chemical potential
μ(Te) at zero temperature. The expressions for the
electron density of states gd per atom and for the effec�
tive mass md of d electrons are similar to Eqs. (1). The
electron dispersion relations have the form

(2)

The parameters entering into Eqs. (1) and (2) are pre�
sented in the table and their meaning is illustrated in
Fig. 1. The energies εs, ε1, and ε2 are measured from
μ(0). The quantities Zs(Te) = ns(Te)/nat and Zd(Te) at
zero temperature are Zs(0) = 3 and Zd(0) = 0 for Al,
Zs(0) = 1 and Zd(0) = 10 for Au, Zs(0) = 1.5 and
Zd(0) = 8.5 for Ni, Zs(0) = 2 and Zd(0) = 6 for Fe, and
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Zs(0) = 2 and Zd(0) = 3 for Ta. The masses ms and md

are normalized to the mass of the free electron.

Figure 1 shows the electronic spectrum of nickel
and its two�parabolic approximation by Eqs. (1) and
(2). The spectrum was calculated within the density
functional theory using the DMol3 code [15] taking
into account all 28 electrons of Ni. The electronic
spectra of Al, Au, Fe, and Ta were calculated using the
ABINIT DFT packet [16], which requires a pseudo�
potential [17]. The d band for Au, Ni, Fe, and Ta is
much narrower than the s band. Correspondingly, d
electrons are heavier. The ε2 point is the upper edge of
the d band. This edge for noble metals is below the μ0

level. The ε2 point for transition metals is above the μ0

level. This edge is particularly close to μ0 in Ni.

We assume that s and d electrons are in thermody�
namic equilibrium between each other and, therefore,
constitute a united thermodynamic subsystem with a
common chemical potential. Indeed, the huge ion�to�
electron mass ratio, which is responsible for the two�
temperature regime, is much larger than the ratio
md/ms. Correspondingly, the three�temperature situa�
tion is absent.

Electrons of the s band are more mobile. For this
reason, charge and heat transport occurs primarily
through s electrons.

2. SUMMATION OF ELECTRON–ION
AND ELECTRON–ELECTRON COLLISION 

FREQUENCIES

We use the effective frequencies determined by the
Drude formulas

(3)

Here, the subscript si refers to the collisions of s elec�
trons with ions. The specific heat Cs and average

square  of the velocity of s electrons are calculated
within the two�parabolic spectral model presented in
Fig. 1. The frequency νse = νss + νsd is the sum of the
scattering frequencies of s electrons from each other
and from d electrons. The electric resistivity has no
contribution from s–s collisions because umklapp
effects are insignificant. For this reason, the denomi�
nators in Eqs. (3) for σ and κ contain the sums νsi + νsd

and νsi + νss + νsd, respectively.

The effective frequencies determined from Eqs. (3)
play an auxiliary role and do not appear in the final
expressions for the 2T thermal conductivity κ2T =
κ(Ti, Te). The thermal resistivity 1/κ2T is the sum
1/κ2T = 1/κsi + 1/κse of the resistivities associated with
s–i and s–e scattering events, respectively (Mattissen
rule). The partial thermal conductivities κsi and κse are
reliably determined from existing experimental data

σ
ns Te( )e2

ms νsi νsd+( )
������������������������, κ 1

3
��

Cs Te( )vs
2

Te( )
νsi νse+

��������������������������.= =

vs
2

(Section 3) and from the kinetic equation in the τ
approximation (Section 4), respectively.

3. ELECTRON–ION CONTRIBUTION 
TO THE RESISTIVITY

Electron–electron processes dominate in the resis�
tivity of d metals only at low (much lower than the
Debye temperature θ) and high (about several elec�
tronvolts) temperatures. Phonons are frozen at low
temperatures (see [13] and references therein). The 2T
situation, where electrons are hot (Te > 1 eV) and Ti

values are moderate, is implemented at high tempera�
tures. Our calculations were performed for the Ti range
from θ to the temperature T∗ several times higher than

the melting temperature Tm.

In the one�temperature (κ1T) case (Te = Ti = T),
i.e., in the range θ < T < T∗, the coefficient κ1T = κ(T)

is determined by the electron–ion interaction (the
contribution from e–e processes is insignificant) and is
studied in detail both experimentally and theoretically.
The corresponding dependences are summarized in
the standard handbooks on physical quantities. Theo�
retical calculations of the κ1T conductivity are based
on the kinetic equation and screened Coulomb inter�

Fig. 1. Approximate description of the band structure of
nickel with the s and d parabolas.

Parameters describing the spectrum

εs, eV ε1 ε2 ms/m md/m

Al –11.1 1.05

Au –9.2 –6.8 –1.7 0.6 5.4

Ni –8.6 –4.5 0.17 1.1 6.9

Fe –8.7 –4.9 1.4 1.3 4.8

Ta –8 –4.6 5.9 1.1 2.4
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action. Such calculations are in good agreement with
the measurements. Such a theoretical approach is
applied in Sections 4 and 5 to calculate the coefficients
κ2T and α in the 2T situation.

It is noteworthy that κee was recently calculated in [13]
taking into account only s–s scattering. Using the results
reported in [13], Gill�Comeau and Lewis [18] obtained
the ablation threshold Fabs|abl = (60–80) mJ/cm2 for Al in
agreement with our results [19–21]. Various
approaches to the calculation of κ2T were compared in
[22]. The case of Al 3s23p, which is a 2T metal with one
band, was considered in [13]. Sections 4 and 5 present
new results generalizing the approach with the kinetic
equation to a complex two�band case with s–d scatter�
ing. This case is important for d metals.

Figure 2 shows the temperature dependences of the
1T resistivity that were obtained from the modern
measurements of the resistance of thin wires heated by
a current pulse (see, e.g., [23]). Such experiments pro�
vide measurements at temperatures significantly
higher than the melting temperature. The resistivity r
in the solid phase of pure metals above the Debye tem�
perature is proportional to T because of an increase
both in the amplitude of thermal vibrations of ions in
a lattice and in the cross section for electron–phonon
interaction. The linear behavior in metals with mag�
netic properties (Ni, Fe, see Fig. 2) continues up to the
Curie point (marked by a square). The linear temper�
ature dependence for iron reaches a large value of
about 1 μΩ m. This value is comparable with the max�
imum metallic resistivity rmax ~ mevF/nse

2a ~ �/e2a ~ 1
μΩ m (the maximum value vF/a, where vF is the
Fermi velocity and a is the lattice constant, is taken for
the collision frequency ν).

The r(T) dependence in transition metals above the
Curie temperature or the melting temperature cannot

be approximated by the expression r ≈ a + bT with a
small constant a. The constant a is no longer small and
the slope dr/dT decreases significantly (see Fig. 2).
This behavior indicates that an increase in r(T) is sat�
urated owing to approaching the limit rmax. The resis�
tivity r in the solid phase in our model is approximated
according to the experimental data shown in Fig. 2,

whereas the formula r = (  + )–1/2 is used for a
melt. This formula matches the linear approximation
rlin = a + bT of the experimental data for a fluid with
the limit rmax. Then, the frequency νsi is determined
from the expression for σ in Eqs. (3).

The choice rmax ~ (2–5) μΩ m weakly affects the
value νsi(T) in the temperature range up to 10 kK
under investigation. The resulting function νsi(T) in
the 2T situation is represented as νsi(Ti); i.e., it is
assumed that scattering from heavy particles at a fixed
density depends primarily on the degree of ordering of
the ion subsystem. This assumption was also accepted
in the preceding approaches, but the authors used only
the linear approximation of the function r(T) and dis�
regarded both the existence of the Curie point and a
change in the coefficients of the linear function r(T)
upon melting.

The ablation threshold Fabs |abl is higher than the
melting threshold by a factor of 2–4. Thermal loads of
about the ablation threshold or higher are studied in
this work. In this case, melting occurs in the 2T relax�
ation time range, because the temperature of the ion
subsystem even in this range is above the temperature
on the crystal–melt transition spinodal [5]. The κ2T

value changes after melting. This change affects the
propagation of the absorbed heat Fabs into the bulk of
the metal at the 2T stage and, therefore, affects the
thickness dT of the laser�heated layer.

4. ELECTRON–ELECTRON s–s 
AND s–d INTERACTIONS

We consider the scattering of s and d electrons sat�
isfying dispersion relations (2). The s–s collisions were
considered in [13]. The effective frequency νsd in the
sum νse = νss + νsd was calculated as follows. First, we
calculated the time τsd(p) = 1/νsd(p) for an s electron
with the momentum p. This time enters into the
kinetic equation in the τ approximation. The thermal
conductivity coefficient κsd and electric conductivity
coefficient σsd were determined from the kinetic equa�
tion. Then, the effective frequency νsd was obtained
from Eqs. (3) either for the coefficient κsd or for the
coefficient σsd.

The calculation stages associated with the solution
of the kinetic equation and Eqs. (3) are similar for the
respective calculation stages for the effective fre�
quency νss [13]. The stage of the calculation of the
function νsd(p) is the most difficult. It qualitatively dif�

rlin
2– rmax

2–

Fig. 2. Temperature dependences of the resistivity r(T); the
resistivity r increases continuously with the temperature
and stepwise upon melting.
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fers from the calculation of the function νss(p) in [13],
because it is necessary to calculate a multiple integral
including statistical factor for electrons from different
bands (see Fig. 1). This circumstance strongly compli�
cates the calculations, because the d band has the
upper limit ε2, which is absent for the s band.

The collision frequency νsd(p) between an s elec�
tron with the momentum p and d electrons is given by
the formula

(4)

This formula is written for the collision p + p'  (p +
q) + (p' – q) between the s electron with the momen�
tum p and a d electron with the momentum p', where
q is the momentum transfer. The function

ensures the energy conservation law in Eq. (4). The
statistical factor S in Eq. (4) has the form

where fs and fd are the Fermi distributions for s and d
electrons, respectively. In Eq. (4), u(q) is the Fourier
transform of the screened Coulomb interaction u(r) =
e2exp(–r/λ)/r, where λ is the Lindhard screening
length [24, 25].
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Formula (4) is used to calculate (using the kinetic
equation) the thermal conductivity coefficient κsd(Te)
associated with s–d scattering. The solution of the
kinetic equation has the form

(5)

where  = ∂fs(ε)/∂ε, μ' = ∂μ/∂Te, and vs is the velocity
of s electrons. A number of changes and intermediate
analytical integration reduce sixfold integral (4) to a
double integral over the plane (q = , p' = ). This
double integral νsd(p) is substituted into Eq. (5); then,
the resulting triple integral is numerically integrated
using the Mathematica symbolic software program.

The effective frequencies νsd = Cs /3κsd and νss =

Cs /3κss are determined from Eqs. (5) and (3) under
the assumption that the electronic spectra at a fixed
matter density depend only slightly on the ion temper�
ature Ti. The dependences νse(Te) = νss + νsd calcu�
lated for the first time for noble and transition d metals
are shown in Fig. 3.

Figure 4 shows the coefficient κ(Te, Ti) finally
obtained taking into account s–i (see Section 3), s–s,
and s–d processes. The s–e contribution to κ2T in the
Te range shown in the figure is larger than the s–i con�
tribution only for temperatures Ti below ~1 kK. Fig�
ure 5 shows the coefficient κ2T for various metals. It
can be seen that the thermal conductivity of Ta and Fe
is much smaller than the thermal conductivity of Al
and Au. Correspondingly, the heated layer in Ta and Fe
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Fig. 3. Effective frequencies νse for simple, noble, and
transition metals. For Al, νse = νss. The electron–electron
frequency in d metals is much higher than that in Al. The
frequency νse in transition metals (Ni, Fe, Ta) is higher at
moderate temperatures Te < 1 eV owing to the contribu�
tion from s–d collisions whose frequency at these temper�
atures is higher than νss. The temperature dependence of
the frequency νse for Ni is not shown, because it is similar
to the dependence for Fe. The horizontal straight lines are
the frequencies νsi at Ti = 300 K.

Fig. 4. Temperature dependences of the 2T thermal con�
ductivity coefficient for nickel. The ion temperature is
shown near the lines. It can be seen that the coefficient κ2T

can be much larger the reference value κ1T = 91 W K–1 m–1

at room temperature.
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is narrower. According to Figs. 4 and 5, the linear
dependence

(6)

is saturated at Te ~ 2–5 kK owing to s–e collisions.
Formula (6) is valid if the temperature dependence of
κ1T is weak. This formula is applicable under the con�
dition νse < νsi, i.e., when scattering from heavy parti�
cles dominates. The behavior κ(Te, Ti) for noble met�
als is interesting. Figure 5 demonstrates the existence
of a quite narrow maximum and a decrease in κ with
an increase in Te in a certain temperature range in the
case of gold. A decrease in the coefficient κ2T with an
increase in the temperature Te was possibly detected in
the recent experiment with gold [26].

5. HEAT TRANSFER RATE FROM HOT 
ELECTRONS TO THE ION SUBSYSTEM

According to classical work by Kaganov, Lifshitz,
and Tanatarov [27], the energy transferred from elec�
trons to ions in unit time and unit volume at Te > Ti is
given by the expression

(7)

This formula is written in terms of the volume of the
system V rather than unit volume. In this representa�
tion, it is clear that the number of cells Vdq/(2π�)3 is

dimensionless. The quantity  and probability Wq

will be defined below. The electron–phonon heat
transfer coefficient is independent of the temperature
Ti if Ti � θ. The formulas below can be generalized to
the case Ti ~ θ. In this case, the coefficient α changes
slightly as compared to that calculated under the
assumption that Ti � θ.

κ κ1T T = 300 K( )Te/Ti≈

E· �ωqN· qV q/ 2π�( )3d∫ α Te( ) Te Ti–( ).= =

N· q

Heat flux (7) is due to the Cherenkov emission of
phonons by supersonic electrons and is nonzero if the
temperatures of the thermodynamically equilibrium
electron and ion subsystems are different. The quan�
tity

in Eq. (7) is the rate of change in the number density
of longitudinal phonons Nq(t) with the momentum q
and energy �ωq owing to the spontaneous and induced
emission of phonons. Here and below,

is the statistical factor involving the Fermi distribution
f(ε; Te, μ) for electrons and the Bose distribution

N(q) = (  – 1)–1 for phonons. The phonon dis�
persion relation ωq = cs /� is written in the Debye
approximation.

The probability of the transition of an electron
from a state with the momentum p to a state with the
momentum p – q in unit time is Wqδ(εp–q + �ωq – εp).
Electrons in metals interact with longitudinal acoustic
phonons. In this case, this probability is given by the
expression

(8)

where U(q) is the Fourier transform of the screened
Coulomb potential; �(q) is the dielectric constant,
which is calculated in the Lindhard approximation
[24, 25] similar to the calculations of s–s and s–d col�
lisions in Section 4; Zi is the effective charge number of
the ion; and nat is the number density of atoms. In
Eq. (7), α = αs + αd. The coefficients αs and αd are cal�
culated individually. In the case of the coefficient αs, Zi

in Eq. (8) is Zs = ns(Te)/nat. In the case of the coeffi�
cient αd, Zi = Zs(Te) + Zd(Te) = const, because the ion�
ization of electron shells below the s and d bands can
be neglected at the temperatures Te of interest. In par�
ticular, Zs + Zd = 10 for nickel (see the fourth sentence
after Eq. (2)).

The formula for the coefficient α can be simplified
after cumbersome calculations. For heat transfer from
the d band to the lattice, the expression has the form

(9)
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Fig. 5. Temperature dependences of the thermal conduc�
tivity κ(Te, Ti = 300 K) for simple, noble, and transition
metals.
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and qD is the Debye momentum. The expression for αs

is simpler than Eq. (9). It is important that these
expressions do not contain the ion temperature at
Ti � θ.

Figures 6 and 7 show the coefficients α = αs + αd

obtained with Eq. (9) for αd and the expression for αs.
We now compare our results from the previous data.
The dependence of α on the temperature Te was
neglected in early calculations of the coefficient α [27,
28]. In fundamental work [27], the matrix element in
the formula for α was estimated, rather than calcu�
lated. In important work [28], the connection with
superconductivity was revealed and the formula for α
from [27] was reduced to the expression

(10)

where g(ε) is the electron density of states (see, e.g.,
Fig. 1) and εF is the Fermi energy. The quantities λ and

 in Eq. (10) are related to the Eliashberg spectral
function and theory of superconductivity [3, 28, 14].
Thus, the coefficient α can be determined knowing

the factor λ . The λ  values for a number of
metals were presented in [3, 29].

Wang et al. [14] emphasized that Eq. (10) is appli�
cable only for fairly low temperatures Te and its gener�
alization was proposed. This generalization has the
form

(11)
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where f is the Fermi distribution. Thus, the factor
g(εF) = gF in Eq. (10) was changed to the factor

[ g2]/g(εF). As a result, a significant electron�

temperature dependence appears because f ' is a func�
tion of Te.

Another important feature of Eq. (11) is as follows.
The total density of states gsum is taken as the electronic
spectrum in Eq. (11). In d metals under consideration
with s and d bands, gsum = gs + gd (see Fig. 1). The sig�
nificant energy dependence of the spectrum gsum(ε)
that is characteristic of d metals enhances the temper�
ature dependence α(Te). The dependence on Te for
noble metals with ε2 < 0 differs from that for transition
metals with ε2 > 0 [3]. The definition of ε2 is given in
Fig. 1 and in the table. The function α(Te) increases
and decreases with an increase in Te at ε2 < 0 and
ε2 > 0, respectively.

The approach with the total spectrum gsum is empir�
ical. In deriving this approach, the energy dependence
of the matrix element in the scattering probability is
neglected [3, 14]. It is even more important that the
difference between the matrix elements for the s and d
bands is neglected. At the same time, the characteris�
tics of the s and d bands are strongly different (see
table). The total electronic specific heat is really calcu�
lated in terms of the spectrum gsum. However, the
transport characteristics (σ and κ) of s and d electrons
are different (see Section 4). Correspondingly, there
are no reasons for the assumption of the equality of the
matrix elements for the s and d bands.

Figures 6 and 7 show the results of the direct calcu�
lation of α by Eq. (9) without any assumptions con�
cerning the matrix elements for the s and d bands. It is
worth noting that Eq. (10) (relation between α and

f '–( )∫

Fig. 6. Dependences α(Te) calculated in this work in com�
parison with those taken from [3], which are marked by
gsum, meaning that α was calculated by Eq. (11) in terms of
the total electron density of states.

Fig. 7. Dependences α(Te) calculated for nickel, iron, and
tantalum using Eq. (9). The dashed line marked by Ni [3]
is taken from [3].
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λ ) is of insignificant theoretical importance,

because the factor λ  is often obtained from mea�
surements of the coefficient α [29]. The same con�
cerns Eq. (11), which differs from Eq. (10) only in a
factor. The dependence α(Te) given by Eq. (11) starts
at room temperature Te from the experimental value
αrt, which changes with the temperature according to

the factor – .

Figure 6 shows α values calculated by formulas
similar to Eq. (9) in comparison to the results obtained
by Eq. (11). As can be seen, agreement between calcu�
lations for single�band metal Al is good. A close value
was obtained in [4]. It is noteworthy that the recent
experiment [30] gives a value of 1.2 × 1017 W K–1 m–3

for the coefficient α in aluminum, which is smaller
than a theoretical value of (3–3.6) × 1017 W K–1 m–3 by
a factor of 2.5–3 and is the half of the value corre�
sponding to the experiment reported in [31] (see dis�
cussion in [30]). It is worth noting that the function
α(Te) (see data for Al in Fig. 6) varies slightly with the
electron temperature at a smooth single�band spec�
trum.

We now analyze the situation for gold as an exam�
ple of noble metals. Figure 6 shows four α(Te) depen�
dences marked as Au, gsum, Au0.6, Au1, and Aucor. The
Au, gsum curve obtained by Eq. (11) is taken from [3].
The Au0.6 and Au1 curves (the subscript indicates the
effective mass of the s electron) were obtained by
Eq. (9). The parameters of the electronic spectrum of
gold that were used to obtain the Au0.6 curve were the
same as in the table. For the Au1 curve, the parameters
of the two�parabolic approximation specified by
Eqs. (1) and (2) were changed to εs = 5.5 eV and
ms/m = 1 and the other parameters remained
unchanged. The accuracy of the calculation by Eq. (9)
is limited by the accuracy of the description of the real
electron density of states by the two�parabolic spec�
trum specified by Eqs. (1) and (2). The difference
between the Au0.6 and Au1 curves in Fig. 6 estimates
the error associated with the approximate representa�
tion of the spectrum.

According to Eq. (9), the α(Te) dependence
approaches the constant value α0.6 |(9)(Te = 300) ≈
0.06 × 1017 W K–1 m–3. According to the experiments
[30–32], αexp(Te = 300) ≈ 0.2 × 1017 W K–1 m–3. Thus,
Eq. (9) with ms/m = 0.6 and 1 for Au gives the α(300)
value that is smaller than the experimental value by a
factor of 3 and 2, respectively. The Aucor in Fig. 6 cor�
responds to the α0.6 |(9)(Te) dependence multiplied by a
factor of αexp(300)/α0.6 |(9)(300). According to the fig�
ure, the calculations by Eq. (9), as well as [3, 14], indi�
cate a significant increase in the coefficient α upon the
heating of the electron subsystem of gold. The com�
parison of the partial coefficients αs and αd shows that

ω2〈 〉

ω2〈 〉

f 'g2
/gF

2

∫

the term corresponding to the heat transfer through αd

electrons dominates in the sum α = αs + αd for gold.
The contribution αs exceeds the contribution αd only
at relatively low temperatures Te < 5 kK. For transition
metals, the term αd is decisive for all temperatures Te.

We consider the situation with transition metals
(ε2 > 0), where the edge of the d band is above the
Fermi level (see Fig. 1). There are three typical cases:
with a small ε2 value (Ni, see table), with an moderate
ε2 value (Fe), and with a large ε2 value (Ta). These
cases are characterized by three different behaviors of
the function α(Te) (see Fig. 7). At small ε2 values (Ni),
the coefficient α(Te) decreases sharply at kBTe > ε2. At
moderate ε2 values (Fe), this decrease is smooth. In
the case of the d band broadened with respect to the
Fermi level μ0, the function α(Te) in Fig. 7 is approxi�
mately constant (Ta).

The α(Te) value for tantalum shown in Fig. 7 is
determined using Eqs. (7)–(9). The functions αNi(Te)
and αFe(Te) were also determined using this approach,
but were then normalized so that the function α(Te) at
room temperature is αexp |rt ≈ 7 × 1017 W–1 m–3 for both
nickel and iron. The αexp |rt value corresponds to the
experimental data for nickel [3]. We believe that this
value for iron will be approximately the same. For this
normalization, the functions αNi(Te) and αFe(Te) cal�
culated by Eqs. (7)–(9) should be reduced by a factor
of 3 and 2, respectively.

The effect of the variation of the parameters of the
band structure on the function αNi(Te) was studied.
The function αNi(Te) plotted in Fig. 7 was calculated
with the boundaries of the bands indicated in the table,
but for Zs(0) = 0.6 [33] rather than 1.5 from the table.
Correspondingly, the masses change as Zs(0) = 0.6,
ms/m = 0.6, and md/m = 7.3. The calculations by
Eqs. (7)–(9) are stable with respect to variation of the
parameters of the approximation given by Eqs. (1) and
(2) near the real spectrum. The function αNi(Te)plot�
ted in Fig. 7 has a flat section at Te > 10 kK. The coef�
ficient (Te) in the flat section at Zs(0) = 1.5 is

larger than (Te) by a factor of 1.5–2. These

two functions at Te < 10 kK differ only slightly. At heat
inputs of about the ablation threshold Fabs |abl ~
0.1 J/cm2, the heat transfer from the electron sub�
system of nickel to ions becomes insignificant in the
energy balance at Te < 3–5 kK, because electrons at
relatively low temperatures have low energy. For this
reason, the large α values at low temperatures Te are
insignificant at these Fabs values.

In summary, the coefficients κ2T and α necessary
for the predictive numerical simulation of the process
and sequences of laser action have been calculated.
Existing information on metal melts has been used to
calculate the electron–ion frequencies entering into

αNi Zs 1.5=

αNi Zs 0.6=
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κ2T. The direct calculations by Eqs. (5) and (7)–(9)
provide new data on s–d scattering and coefficient α
for d metals. The detailed calculation results are pre�
sented in a digital format at the website of the Landau
Institute for Theoretical Physics, Russian Academy of
Sciences [34].
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