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Femtosecond laser pulses are used in numerous
modern technologies: modifications of optical, hydro�
phobic, catalytic, etc., characteristics of surfaces
owing to nanostructuring or plastic modification;
enhancement of the hardness owing to laser�induced
pinning; sputtering film deposition; keratotomy in
ophthalmology; nanoplasmonics; nanophotonics;
metaoptics; printing by the laser�induced transfer of
small portions of different films from one surface to
another (LIFT); etc. The material processing in the
aforementioned techniques is based on a pronounced
increase in temperature and in dynamic stresses dur�
ing a very short time within a very thin (about 10–
103 nm) surface layer of a solid heated owing to ther�
mal conductivity. Here, the absorption of laser energy
is accompanied by the onset of the two�temperature
stage, at which the thermal energy of excited electrons
far exceeds that of the lattice [1].

The numerical simulation of the thermal and
dynamical phenomena in metals starts from the calcu�
lations of the thermal conductivity κ since the κ value
at the two�temperature stage (Te � Ti) exceeds by a
factor of 10–30 the corresponding single�temperature
values and is determined with an insufficient accuracy.
Because of such high κ values, the thickness of the
heated layer (dT ~ 100 nm) far exceeds the skin layer
thickness (about 15 nm), in which radiation is
absorbed. The thermal scale dT grows with κ. Along
with the scale dT, the melting and ablation thresholds

increase (of course, at the fixed parameters character�
izing the electron–ion heat transfer, latent heat of
fusion, and dynamic strength within the range of
deformation rates under study).

The thermal conductivity κ is determined by the
collision rates of heat carriers (electrons) with ions
(νei) and with other electrons (νee) The contribution of
νee becomes appreciable at high values of Te when the
electron degeneracy is partially lifted. At room tem�
perature, the contribution coming from νee can be
neglected in comparison to that of νei. The contribu�
tion of νee was explicitly calculated earlier for single�
band metals [2] and for two�band metals [3]. The cal�
culations reported in [2, 3] involved the matrix ele�
ments for the scattering amplitude and the kinetic
equation.

The total frequency ν is determined as a sum

(1)

As we mentioned above, the νee term in sum (1) can be
explicitly calculated [2, 3].It is usually assumed that
the νei term depends only on the ion temperature Ti

[2–7].
In addition, the dependence of νei on the tempera�

ture Ti is usually taken from experimental data. The
simplest approximation for νei linear in temperature Ti

is often used [4–7]. It is well known that, above the
Debye temperature, the electron–phonon collision
rate increases almost linearly with the temperature,

ν νei νee.+=
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since the amplitude squared of thermal ionic vibra�
tions is a linearly increasing function of the tempera�
ture. A more accurate approach takes into account the
kink at the Curie point (if such a point exists) along
with the melting and saturation at the minimum value
of metallic conductivity (about 1 μΩ m) [2, 3]. If the
experimental data are used, the ion temperature Ti in
the two�temperature situation is assumed to coincide
with the temperature T corresponding to the single�
temperature case, T = Ti = Te. Of course, the Ti  T
substitution is based on the assumption that the fre�
quency νei is independent of the temperature Te.

Let us discuss the implications of the assumption
that the frequency νei depends only on Ti and is inde�
pendent of Te,

(2)

At the two�temperature stage, the heat wave moves to
the target bulk at supersonic speed. Therefore, at this
stage, in the main volume of the heated layer, the den�
sity of the material is approximately equal to the initial
density (isochoric process). Thus, we neglect the
dependence on density. Only the temperature depen�
dence remains. The mean free time 1/νei between the
electron–ion scattering acts depends on the electron
velocity ve and on the cross section for scattering by
the ion subsystem. Within the electron temperature
range of the order of several electronvolts, velocity ve

is slightly growing in comparison to the Fermi velocity
vF. Within approximation (2), this dependence is usu�
ally disregarded, ve(Te) ≈ vF.

In addition, it is usually assumed that the cross sec�
tion for scattering by ions depends only on the degree
of ordering in the ion subsystem. In the ideal system,
this cross section vanishes. It is often argued that the
degree of ordering is mainly determined by the ion
temperature Ti. This results in approximation (2). Of
course, the statement that the ordering is determined
only by the value of Ti implies neglecting the depen�
dence of elastic constants on the temperature Te. The
dependence of the other parameters on the tempera�
ture Te is important in semiconductors [8] and insula�
tors [9]. This is the basis of the popular mechanism
underlying the superfast nonthermal melting due to
the lowering of rigidity and the acoustic instability of
the crystal lattice arising at the excitation (ionization)
of electrons from the valence band to the conduction
band [10].

In metals, we deal with the electron excitations
within the conduction bands. The elastic constants in
a metal can both be insensitive to the electron excita�
tions (e.g., in aluminum [8, 11]) and be enhanced with
the growth of the temperature Te (e.g., in gold [8]).
The enhancement of rigidity in gold with Te [8, 12] is
rather moderate. Indeed, the shift of the melting point
due to the growth of Te (the shift of the melting curve
Tm(p, Te)) is not large if this shift is normalized with

νei Te Ti,( ) νei Ti( ).≈

respect to the value of the single�temperature melting
point at a given pressure, [Tm(p, Te) – Tm(p])/Tm(p).
We neglect a small lowering of the electrical resistance
due to the increase in rigidity and the speed of sound
with temperature Te in gold.

We refer to the effect described in seminal papers
[13, 14] as the Mott effect (see Fig. 1). The Mott effect
leads to a pronounced enhancement of electrical resis�
tivity in metals with a partially filled d band. There are
a lot of such metals. Nickel, platinum, iron, titanium,
tungsten, tantalum, and other metals have a partially
filled d band. The larger the density of states gd(εF) in
the d band near the Fermi surface, the stronger is the
effect. Nickel and platinum have record values of
gd(εF). The decrease in the electron mean free path
lowers the electrical and thermal conductivities. The
increase in the scattering cross section is caused by the
electron scattering to the unoccupied states at colli�
sions with phonons (Fig. 1).

The calculations of the electron–phonon interac�
tion in metals discussed in this paper demonstrate that
relation (2) is indeed approximately met in the metals
that do not exhibit the Mott effect. It turns out that the
increase in the e–i scattering cross section does not
manifest itself in the transition metals at high electron

Fig. 1. Enhancement of the electrical resistance of transi�
tion metals at moderate temperatures Te is caused by an
increase in the statistical factor [13, 14] involved in the
scattering probability. In transition metals, the statistical
factor is large in comparison to that in the metals with the
single�band conductivity. The statistical factor grows
owing to the high density of empty d states. When the
chemical potential attains the upper edge of the d band ε2
and exceeds it, the statistical factor decreases (no transi�
tions to the d band occur; the upper head of the right dou�
ble�headed arrow is crossed). The double�headed arrows
are placed at the points corresponding to the chemical
potential μ(Te = 1 kK) ≈ 0 < ε2 and μ(Te = 30 kK) ≈
+2.3 eV > ε2. The values of εs, ε1, and ε2 calculated for
platinum in the framework of the density functional theory
are –10, –7.5, and +0.27 eV, respectively.
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temperatures. Therefore, the frequency νei in the tran�
sition metals depends on both Ti and Te in contrast to
assumption (2).

We illustrate this consideration in Fig. 1. For better
visualization, gs(ε) and gd(ε) curves corresponding to
the energy dependence of the electron density of states
for the s and d conduction bands are plotted along the
upward and downward vertical axes. A parabolic
approximation is used for the approximate description
of the density of states determined by the quantum�
mechanical calculations for the electron subsystem in
the crystal [3]. It is important that, in transition metals
at room temperature, the d band edge ε2 is located to
the right of the Fermi level μ(Te = 0). That is why the
electron transitions to the unoccupied d states are pos�
sible with the emission or absorption of a phonon. The
functions  and  plotted in Fig. 1 are the deriva�

tives of the Fermi distribution f = [1 – ]–1

with respect to ε taken with the opposite sign at Te = 1
and 30 kK, respectively. In Fig. 1, the scales for the
plots of the functions  and  are different. They are
chosen in such a way that the heights of the plots
become comparable to each other. It is well known
that the charge and heat transfer involves the electrons
falling within the range corresponding to appreciable
values of derivative f ' (see expression (12) below). The
occupied and empty states are located to the left and
right of this range, respectively.

The maximum value of derivative f ' corresponds to
the point where ε = μ. In Fig. 1, the points of maxi�
mum are indicated by the double�headed arrows. The
left double�headed arrow denotes the transitions to
the empty d states. In this case, the statistical factor is
large since the density of d states is quite high and the
energy range including the  function is situated
within the d band (i.e., to the left of the upper edge ε2

of the d band). In the case corresponding to the right
double�headed arrow, most of the s electrons cannot
come to the d band because, first, the electron–ion
interaction is quasielastic and, second, the main part
of the range covered by  is located to the right of the
d band edge. Therefore, the upper head of the right
double�headed arrow is marked by a cross. In the case
of , the statistical factor is substantially reduced in

comparison to that for . It is important that, in the
transition metals (with small positive values of the dif�
ference ε2 – μ(0)), the chemical potential μ(Te)
undergoes quite an appreciable shift toward larger
energies with the growth of the temperature Te. Thus,

the  function is shifted with respect to the d band.
The width of the hωq range that characterizes the
change in the electron energy in the e–i interaction is
small in comparison to the characteristic scales of the

f 1' f 30'

e
ε μ–( )/kBTe

f 1' f 30'

f 1'

f 30'

f 30'

f 1'

f 30'

electron energies (quasielastic case). In Fig. 1, this
range is indicated by arrows with the legend hωq.

Let us now go from the qualitative explanations to
the calculations of the frequency νei(Te, Ti) in the two�
temperature situation, Te > Ti. We approximate the
electron spectrum by two parabolas (see Fig. 1 and
[3]),

(3)

corresponding to the s and d bands with the effective
masses ms and md, respectively (e.g., 4s23d8 or 4s13d9 in
Ni and 6s15d9 in Pt). The parameters of the parabolas
are determined from the density functional simulation
of the quantum state of the crystal [3]. The electron
distribution functions for the s and d bands, fs(p) =

[1 + ]–1 and fd(p') = [1 + ]–1,
have common values of the chemical potential μ(Te)
and of the temperature. The energy of d electrons in
Eqs. (3) falls within the d band ε1 ≤ ε(p') ≤ ε2 (see Fig. 1
and [3]). The band edges are shown in Fig. 1. The
phonons are described by the distribution function

N(q) = [  – 1]–1, which depends on the
momentum q of a phonon and on the temperature.

The number of s electrons leaving an element of the
phase volume dp/(2π�)3 per unit time and coming to
the s band (s  s) is equal to

(4)

The rate of the decrease in the number of s electrons,

 (4), is related to the emission of phonons with
the momentum q. This process can be written as p =

p' + q. In the notation , the superscript means
an s electron has emitted a phonon (ph) and remained
an s electron (s  s + ph). The subscript (here,
minus) indicates the decrease in the number of elec�
trons. The subscript “plus” means that the number of
electrons increases. Expression (4) implies the quasi�
elasticity of scattering (the phonon energy is low).
Therefore, we write δ = δ(ε – ε') instead of δ(ε – ε' –
�ω(q)].

The formulas for the other cases of changes in the
number of particles are represented similarly to
Eq. (4):

•  describes electrons coming from the s
band to the s band (s  s) from the volume dp/(2π�)3

owing to the absorption of a phonon (process p = p' –

q). The matrix element  is the same as in Eq. (4).

•  describes the s  d electrons coming
from volume dp/(2π�)3 owing to the emission of a

ε p( ) εs p2
/2ms, ε p '( )+ ε1 p '

2
/2md,+= =

e
εs μ–( )/kBTe e

εd μ–( )/kBTe

e
�ωq/kBTi

fs p( ) 2dp

2π�( )3
�������������� Wpp '

ss δ 1 fs p '( )–[ ] Nq 1+( ) V p 'd

2π�( )3
��������������.∫

N· –
s s ph+,

N· –
s s ph+,

N· –
s ph s,+

Wpp '
ss

N· –
s d ph+,
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phonon (process p = p' + q). The matrix element has

the form .

•  describes the s  d electrons coming
from the volume dp/(2π�)3 owing to the absorption of
a phonon (process p = p' – q).

•  describes the s  s electrons coming
from the volume dp/(2π�)3 owing to the emission of a
phonon (process p = p' + q).

There are three additional contributions ,

, and  increasing the number of parti�
cles.

Summing four types of coming particles  and

four types of leaving particles , we arrive at the fol�

lowing expression for the rate  of change in the
number of particles in the volume dp/(2π�)3 in the s
band:

(5)

where again δ = δ(ε – ε').
Similarly to Eq. (5), the change in the number of d

electrons in the volume element dp/(2π�)3 is equal to

(6)

Relations (5) and (6) correspond to the collision
terms in the kinetic equation. The left�hand side of the
kinetic equation has the form

where E is the electric field vector, m* is the effective
mass, and  = ∂f/∂ε. In the relaxation time approxi�
mation

we find the correction f1 = (e/m*)(– )pEτ(p) to the
equilibrium (Fermi) distribution function f0.

Then, we linearize both kinetic equations with

respect to the sought small corrections,  and , to
the equilibrium distribution. Owing to the quasi�elas�
ticity of the collisions, (– ) = (– ). Using this rela�

Wpp '
sd

N· –
s ph d,+

N· +
s s ph+,

N· +
s ph+ s,

N· +
s d ph+,

N· +
s ph d,+

N· +

N· –

N·
s

N·
s

Ss Ds+( ) 2dp/ 2π�( )3
,⋅=

Ss Wpp '
ss δ fs p '( ) fs p( )–[ ] 2Nq 1+( ) V p 'd

2π�( )3
��������������,

s

∫=

Ds Wpp '
sd δ fd p '( ) fs p( )–[ ] 2Nq 1+( ) V p 'd

2π�( )3
��������������,

d

∫=

N·
d

Dd Sd+( ) 2dp/ 2π�( )3
.⋅=

df/dt ∂f/∂p eE⋅ f ε' v eE⋅ e/m*( ) f ε' pE,= = =

f ε'

df/dt f f0–( )/τ p( )– f1 p( )/τ p( )–= =

=  e/m*( ) f ε' pE,

f ε'

f 1
s f 1

d

f ε' f ε ''

tionship, we can write the corrections in the form  =

ηs(ε)pEτs(ε) and  = ηd(ε)pEτd(ε). Hence, we obtain
the following kinetic equation for s electrons:

where δ ≡ δ(ε – ε') and ξ = (2Nq + 1)Vdp'/(2π�)3. The
kinetic equation for d electrons has a similar form.

The angle α between the vectors p and E, the angle
α' between the vectors p' and E, and the angle θ
between the vectors p and p' are related by the geomet�
ric formulas

After integration over φ (the angle between the (pp')
and (pE) planes), we find

Owing to the δ function, the equality p' = p is satisfied
for the s–s scattering. We can eliminate the δ function
by integration over ε'. As a result, we arrive at a set of
kinetic equations

(7)

(8)

which relate the relaxation times τs and τd. The coeffi�
cients in Eqs. (7) and (8) are as follows:

f 1
s

f 1
d

ηs ε( )pE–

=  Wpp '
ss δ ηs ε( )p 'Eτs ε( ) ηs ε( )pEτs ε( )–[ ]ξ

s

∫

+ Wpp '
sd δ ηd ε( )p 'Eτd ε( ) ηs ε( )pEτs ε( )–[ ]ξ,

d

∫

p 'E p 'E α 'cos p 'E α θcoscos α θ φcossinsin+( ).= =

p 'E p 'E α 'cos p 'E α θcoscos p '
p
���pE θ.cos= = =

ηs Hss Gsd+( )τs ηdHsdτd– ηs,=

ηsHdsτs ηd Hdd Gds+( )τd– ηd,–=

Hss ε( ) Wss 1 θcos–( ) 2Nq 1+( ) V

2π�( )3
��������������

2πms

p
����������q q,d

s

∫=

Hsd ε( ) Wsdp '
p
��� θ 2Nq 1+( ) V

2π�( )3
��������������

2πmd

p
����������qcos q,d

d

∫=

Gsd ε( ) Wsd
2Nq 1+( ) V

2π�( )3
��������������

2πmd

p
����������q q,d

d

∫=

Hdd ε( ) Wdd
1 θcos–( ) 2Nq 1+( ) V

2π�( )3
��������������

2πmd

p '
����������q q,d

d

∫=

Hds ε( ) Wds p
p '
��� θ 2Nq 1+( ) V

2π�( )3
��������������

2πms

p '
����������qcos q,d

s

∫=

Gds ε( ) Wds 2Nq 1+( ) V

2π�( )3
��������������

2πms

p '
����������q q.d

s

∫=
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The matrix elements W involved in these coefficients
depend on the absolute value of momentum q.

A solution to the set of Eqs.(7) and (8) has the form

(9)

(10)

In Eqs. (9) and (10), we take into account that ηd/ηs =
ms/md. If the momentum of the electron is such that
only the s  s scattering is possible, the expression

(11)

is obtained instead of Eqs. (9) and (10).

To determine the relaxation times τs and τd, we per�
formed the integration over ε' eliminating the δ func�
tion δ(ε' – ε). The requirement of a nonzero result of
such integration imposes some limitations on the inte�
gration region in terms of the variables p and q. The
most difficult and cumbersome stage of the calcula�
tions is just taking into account these geometric con�
straints. In this brief description, we omit this issue.
The point is that the present paper is focused on the
main effect, namely, the lowering of the e–i electrical
resistance in transition metals with the growth of the
temperature Te. Concerning the double integration

, we note that the integral  in the (pq)

plane is calculated in order to determine the factors H
and G in Eqs. (9)–(11).The integration over p arises in
the calculations of the conductivity in terms of the
relaxation time (see Eq. (12)).

τs ε( )
ms/md( )Hsd Hdd Gds+ +

Hss Gsd+( ) Hdd Gds+( ) HsdHds–
���������������������������������������������������������������,=

τd ε( )
ms/md( )Hds Hss Gsd+ +

Hss Gsd+( ) Hdd Gds+( ) HsdHds–
���������������������������������������������������������������.=

τs ε( ) 1/Hss=

q pdd∫∫ qd∫

Writing expressions for the current density, we
determine the conductivities. The expression for the
conductivity by means of s electrons has the form

(12)

where the derivative of the Fermi function f0s is taken
with respect to the energy ε = εs + p2/(2ms) (see Eq. (3)
and Fig. 1). The conductivity of d electrons σd(Te, Ti)
is given by an expression similar to Eq. (12). Here, we
should change subscripts (s  d), momenta (p 
p'), and energy (ε  ε'). In the formula for the elec�
trical conductivity σd, the Fermi function f0d is differ�
entiated with respect to the energy ε' = ε1 +
(p')2/(2md); see Eq. (3).

The total conductivity σel–ph, which is determined
by the electron–phonon interaction, is σel–ph(Te, Ti) =
σs + σd. Figure 2 shows the temperature dependence
of the electrical resistivity rel–ph = 1/σel–ph for the sin�
gle�temperature (1T) case. Open circles on the exper�
imental plots for nickel (Ni) and iron (Fe) mark the
values of the Curie temperature (TC = 628 K and
1041 K, respectively), below which these metals are in
the ferromagnetic state. Formulas (4)–(12) are rele�
vant to the phonon contribution to the electrical con�
ductivity (the lattice part of the electrical resistivity rlat)
and disregard the additional scattering related to the
magnetic fluctuations and to the excitation of spin
waves (the magnetic contribution to the electrical
resistivity rmag). It is well known that rlat ∝ T above the
Debye temperature. The magnetic contribution is
smaller but grows faster, rmag ∝ T3 [14, 16]. Function
rmag(T) attains the maximum at the Curie tempera�
ture, when the system undergoes the transition to the
paramagnetic phase. Further on, it does not change,
According to [17], rmag(T) equals 25 and 70% of rlat(T)
at T = 300 and 500 K, respectively.

The above discussion concerning the temperature
dependence of rlat(T) and rmag(T) makes it possible to
separate the contribution rlat from the measured total
resistivity r(T) = rlat + rmag [16, 17]. In [16, 18], sets of
quantum calculations of rlat(T) were performed for the
fcc lattice of iron with the Kubo–Greenwood formula
[16] and for the bcc and hcp lattices of iron with the
Eliashberg spectral functions [18]. In Eqs.(4)–(12),
the crystal is approximated by an isotropic elastic
medium. The calculations in [16, 18] were performed
for temperatures up to 500 K with the most advanced
currently existing techniques and the most powerful
present�day computational resources. The data for
T = 300 and 500 K reported in [16] and [18] are shown
in Fig. 2 by the filled circles and skewed crosses,
respectively. We can see that the data of [16, 18] agree
well with our calculations by Eqs.(4)–(12) for iron in
absolute value and slope. In the case of gold, the agree�

σs
2
3
�� e

ms

����⎝ ⎠
⎛ ⎞ 2 4π

2π�( )3
��������������

∂f0s

∂ε
�������–⎝ ⎠

⎛ ⎞ τs p( ) p4 pd

2π�( )3
��������������,

p

∫=

Fig. 2. (Dashed curves) Calculations by Eqs. (4)–(12) in
comparison with (solid curves [15]) the experimental data.
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ment of our calculations by Eqs.(4)–(12) with the
experimental data is quite good.

The aforementioned calculations [16, 18] deal with
the single�temperature situation. The first calculations
[19, 20] for the two�temperature case (Te � Ti) in a
simple metal (aluminum) have recently been per�
formed on the basis of the density functional method.
The obtained results agree well with our semianalytical
model [2, 3]. The calculations of the transport charac�
teristics of metals with a complicated electron spec�
trum (e.g., nickel) using the density functional
method are difficult and have not yet been carried out.

The aim of our calculations by Eqs.(4)–(12) is the
description of the effect of the electron excitation on
the electron–phonon interaction. The dependence of
the lattice part of the electrical resistance rel–ph(Te, Ti)
on the electron temperature Te at the ion temperature
Ti = 300 K is shown in Fig. 3. In the case of nickel and
iron, we see that the e–i interaction becomes weaker
with the growth of the temperature Te. Platinum
exhibits a behavior similar to that of nickel. An appre�
ciable difference in the electrical resistivity of nickel
and iron (at room temperature), on one hand, and
gold, on the other hand (see Figs. 2 and 3), character�
izes the effect noticed by Mott [13, 14]. As was men�
tioned above, the increase in the electrical resistivity is
caused by the presence of empty states in the d band.
From Fig. 3, it follows that this effect is gradually
reduced and vanishes when the temperature Te

becomes higher than the energy ε2 (ε2 = 0.17 eV for Ni
and 1.4 eV for Fe). The qualitative explanation of the
mechanisms underlying such a surprising behavior is
given in Fig. 1. Note that, at rather high values of Te,

the electrical resistivity rel–ph of the metals with differ�
ent electron spectra turns out to be nearly the same.

Thus, in the case of the metals with ε2 > μ(0),
approximation (2) does not work well. Figure 4 shows
the results for the thermal conductivity calculated tak�
ing into account the dependence of νei(Te, Ti) on two
temperatures. This correction is not essential for the
metals with ε2 < μ(0) (e.g., for Al and Au). As we can
see (Fig. 4), at high energies of the electron excita�
tions, nickel and gold exhibit nearly the same values of
the thermal conductivity. At the same time, under sin�
gle�temperature conditions at temperatures above the
Debye temperature but below the melting point, their
values of the thermal conductivity significantly differ
from each other: about 100 W/m/K for Ni and about
300 W/m/K for Au.

In conclusion, the coefficient κ has been calculated
analytically for the first time involving both the elec�
tron–electron (e–e) and electron–ion (e–i) pro�
cesses. Earlier, the e–i contribution was determined
from experimental data [2–7]. For the transition met�
als, it has been found that the excitation of electrons
significantly reduces the e–i contribution.

This work was supported by the Russian Founda�
tion for Basic Research, project no. 11�08�01116�a.
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