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Two-temperature Heat Conductivity of Gold
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Abstract— Heat transfer by electrons has a significant influence on the heating of the metal
target under the action of ultrashort laser pulses. Therefore, in problems of laser ablation of
metals it is important to know the value of the electronic thermal conductivity. We made cal-
culations and present analytical expressions of the electronic thermal conductivity of solid and
liquid gold in the important for the interaction of femtosecond laser pulses with metals state with
unequal electron and ion temperatures in a wide range of temperatures and densities.

1. INTRODUCTION

When considering the problem of interaction of femtosecond laser pulses with metals we often use
the system of equations describing the hydrodynamical motion of metal target under the laser
pulse action. These equations take into account heat transfer by electrons. Thus electron thermal
conductivity becomes a very important kinetic coefficient governing the dynamics of heating of a
target, temperature and pressure distribution in a heating layer of a target. The pecullar feature
of the interaction of femtosecond laser pulses with metals is the occurrence of nonequilibrium
state with large difference between electron (Te) and ion (Ti) temperatures. Therefore we need
the knowledge of electron thermal conductivity in such two-temperature states [1–5]. Difference
between electron and ion temperatures can achieve several electron Volts. Furthermore, when
considering ablation under the laser irradiation, we have a strong expansion of matter and thermal
conductivity therefore must be calculated at differing values of density. In addition laser ablation
is accompanied by phase transitions of a target matter which also must be taken into account. We
calculate electron thermal conductivity of gold in a wide range of electron and ion temperatures
in the absence of equilibrium between them and in dependence on the density with taking into
account phase transition between solid and liquid state.

2. CONTRIBUTION OF ELECTRON-ELECTRON COLLISIONS INTO THE THERMAL
CONDUCTIVITY

As we consider electron temperatures up to several eV, electron-electron collisions contribute to a
significant extent to the electron relaxation time at large electron temperatures. In a noble metal
such as gold we are interesting in the scattering of conduction electrons (s-electrons) by the same
s-electrons and d-electrons. According to the Matthiessen’s rule the thermal conductivity κse, due
to the scattering of s-electrons by other electrons satisfies the condition given by κ−1

se = κ−1
ss + κ−1

sd ,
where κss and κsd present contributions of s-s and s-d collisions. By solving the kinetic equation for
the electron-electron scattering by the method of [3, 6] we have calculated the thermal resistivity
κse due to e-e collisions. The two-parabolic model of the electron spectrum [3, 6] with the Thomas-
Fermi screening was used. Parameters of parabolic electron bands — the bottom of the s-band
Es = −9.2 eV, the bottom of the d-band E1 = −6.8 eV and the top of the d-band E2 = −1.7 eV,
measured from the Fermi level, were found by using the density functional theory in the VASP
package [7]. Our band structure calculations [8] carried out using the VASP package [7] show that
in gold Fermi energy is proportional to the compression x = ρ/ρ0 to the first degree: EF = xEF0,
and is not proportional to x2/3. Here ρ0 = 19.5 g/cm3 is the density at zero temperature and
pressure, EF0 is the Fermi energy at x = 1.

κse(Te, x) = 1.076 · 10−5x4/3
(
1/t + b0/

√
t + b1 + b2t

)
(1)

(in units of W/(m· K)), where b0 = 0.03, b1 = −0.2688, b2 = 0.9722 and the normalized temperature
t = 6kBTe/EF (x) = 6kBTe/(xEF0), where kB is the Boltzmann constant, EF — Fermi energy, is
used. We neglect the dependence of κse(Te, x) on the ion temperature Ti, since in noble metals it is
weak [6, 9, 10]. At a fixed concentration of ions electronic spectrum rather weakly depends on the
phase (solid or liquid) of the metal. Therefore, we use the approximation (1) in solid and liquid
phases alike.
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3. THERMAL CONDUCTIVITY OF GOLD IN THE SOLID PHASE

Thermal conductivity κ, associated with the electron-phonon interaction in the solid phase can be
written as κsi = cevλsi/3 with the electronic heat capacity per unit volume ce, average speed of
electrons v and the mean free path length λsi = 1/(nΣsi), where n is the concentration of atoms and
Σsi is the effective cross section of the electron-phonon interaction. For the effective cross section we
have Σsi ∝ u2

0(Ti/θ), u0 ∝ ~/(MkBθ)1/2, where u0 is the amplitude of zero-point vibrations of the
atom with mass M , θ = ~cskD/kB is the Debye temperature, cs — sound velocity, kD = (6π2n)1/3

— Debye wave number. Then λsi ∝ θ2/(nTi). Thus, when calculating the mean free path and
transport characteristics the dependence of the Debye temperature θ on the dimensionless density
x, defined above becomes important.

To analytically describe the effect of tension and compression, we need a cold-pressure depen-
dence on the density. We represent it as the sum of the attractive and repulsive parts

pc = An0x
(
xa − xb

)
, (2)

where n0 is a concentration of atoms in equilibrium at T = 0, p = 0. Parameters in the ex-
pression (2) A = 14.6 eV/atom, a = 3.92, b = 1.95 are defined to reproduce reference value of
the bulk modulus of gold K = 220 GPa (Wikipedia) under normal conditions, cohesive energy
3.78 eV/atom [11] and the reference value 14.2 ·10−6 K−1 of the thermal expansion coefficient under
normal conditions [12]. For these values of the parameters (A, a, b) minimal pressure on the cold
curve (2) is equal to pmin = −26.0GPa. at the expanding ratio xmin = 0.77. Present values are
consistent with the commonly used data (xmin = 0.74, pmin = −21GPa) [13, 14]. When making a
binomial formula (2) for cold pressure the expression for the Debye temperature has the form

θ(x) = (~/kB)cs0kD0x
1/3y1/2(x), y(x) =

[
(a + 1)xa − (b + 1)xb

]
/(a− b), (3)

where y ∝ K = ρdpc/dρ, K — bulk modulus, and cold pressure pc is given by (2); the speed of sound
cs0 is averaged over directions by using the relation 3/c3

s0 = 1/c3
l0 + 2/c3

t0 with longitudinal cl0 and
transverse ct0 sound velocities taken at x = 1 as well as the Debye wave number kD0 = kD(x = 1).
To avoid the difficulties associated with the negative values of y(x) at small x and to describe
moderate (tens of percent) density variations around the equilibrium value, we use the function

ȳ(x) = (1 + cab)xα/(1 + cabx
β), α = 2a + 1, β = a + 1, cab = (a− b)/(b + 1) (4)

instead of the function y(x). Parameters of the function ȳ(x) (4) are chosen so that the functions
ȳ and y are close to each other near the equilibrium density x = 1. As it can be seen, when x → 0,
the function ȳ(x) (4) remains positive. The thermal conductivity in the solid phase can be written
as κsol = κseκ

sol
ei /(κse + κsol

ei ) with the electron-electron contribution to the thermal conductivity
κse given by (1). Index “se” denotes the s-electron scattering on the s- and d-electrons.

Coefficient of thermal conductivity due to electron-phonon collisions in a solid phase κsol
si is

calculated by the formula

κsol
si = (1/3)cevλsi = (1/3)nkBC(t)vF λsi, (5)

In the formula (5) a dimensionless factor C(t), t = 6kBTe/(xEF0) comprises the dependence
of heat capacity and average speed of s-electrons v = vF ((1 + 3kBTe/(2xEF0))1/2 on the electron
temperature Te (and x). Fermi velocity vF = vF0x

2/3, when EF = EF0x. Other multipliers in (5)
don’t depend upon Te. The heat capacity of the s-electrons is calculated in the framework of the
two-parabolic approximation of the electron spectrum [3] and significantly differs from the total
electron heat capacity of gold.

Replacing y(x) by ȳ(x) in (3), we obtain θ2(x) = θ2(1)x2/3ȳ(x). Then λsi ∝ [ȳ(x)/x1/3](1/Ti).
Entering the value κ0(t) = (1/3)n2/3

0 kBC(t)vF0, having the thermal conductivity dimension, we
get from (5) κsol

si ∝ κ0(t)x4/3ȳ(x)/Ti. The function κ0(t) was calculated for solid gold at x = 1.
Results can be approximated by the expression

κ0(t) = 131
t(1 + 3.07t2)
(1 + 1.08t2.07)
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(in units of W/(m·K)). We denote xrt = 19.3/19.5 relative density of gold on the sublimation
curve at room Trt = 0.293 kK temperature. Together with the experimental value of the thermal
conductivity under these conditions 318 W/(m·K), we obtain

κsol
si (Te, Ti, x) = 318

(
x

xrt

)4/3 ȳ(x)
ȳ(xrt)

Trt

Ti

κ0(t)
κ0(trt)

, (6)

in units of W/(m·K), where trt = 6kBTrt/(xrtEF0).

4. THERMAL CONDUCTIVITY OF GOLD IN THE LIQUID PHASE

Electron-electron contribution into the thermal conductivity of molten gold is still given by (1).
Assuming that in the liquid phase electron mean free path λl due to the electron-ion scattering can
be, as in the solid phase, written in factorized form λl = n

−1/3
0 W (Ti)xβ, and again using the value

κ0(t(Te, x)), we have for the coefficient of thermal conductivity

κliq
ei (Te, Ti, x) = κ0(t) · x5/3W (Ti)xβ.

Drude formula for resistivity gives

r(Ti, x) =
pF

ne2λl
=

r0

W (Ti)xβ+2/3
.

Here r0 = (3π2)1/3R0/(2π)n−1/3
0 = 3254 nOhm·m. According to quantum molecular dynamics

calculations [15] we take β = 4/3. Function W (T ) can be found by the use of known experimental
dependence rl(T ) of the resistivity of gold [12] on the temperature on the boiling curve xl(T ) of
phase diagram, so that

W (T ) =
r0

rl(T )xβ+2/3
l (T )

Boiling curve [16] for the temperature T in kK can be approximated as xl(T ) = 0.8872−0.03283(T−
1.337) − 0.003098(T − 1.337)2 − 0.0001649(T − 1.337)3 with a resistivity in the units of nOhm·m
on it rl(T ) = 148.5 + 119.3 ∗ T ∗ 15.337/(14 + T ), which coincides with the known experimental
data and tends to the minimum metallic conductivity in strongly disordered ion system at high ion
temperatures.

Then we obtain the coefficient of thermal conductivity in the liquid phase due to electron-ion
collisions in the form

κliq
ei (Te, Ti, x) = κ0(t)

r0

rl(Ti)
x

(
x

xl(Ti)

)β+2/3

. (7)

The thermal conductivity coefficient in liquid phase is entirely calculated with taking into account
κse, so that the thermal conductivity is κliq = κseκ

liq
ei /(κse + κliq

ei ).
In Fig. 1 the electron thermal conductivity of gold in dependence on the temperature for single-

temperature situation in the thermal equilibrium state on the binodal curve including the subli-
mation and boiling curve, as well as on the normal density isochore is presented. Phase transition
between solid and liquid states is manifested in a jump in the thermal conductivity on the binodal
and slightly more smooth transfer from its value in the solid state to the value in the molten state
on the isochore. Fig. 2 presents results of calculation of thermal conductivity in dependence on
the relative density x at three values of equilibrium temperature T = 1000 K, 1337 K and 1800 K.
Influence of liquid-solid phase transition onto the thermal conductivity can be seen.

In Fig. 3 electronic thermal conductivity in the nonequilibrium two-temperature case, interesting
for the interaction of ultrashort laser pulses with metals, is shown in dependence on the electron
temperature for several values of the ion temperature in both the solid and liquid phases for the
density ρ = 19.5 g/cm3 (density at T = 0, p = 0). The nonmonotonic behaviour of the coefficient
of thermal conductivity in the solid phase at relatively low ion temperatures is due to significantly
weaker increase of the electron-electron collisions as the electron temperature increases above 10 kK,
than at lower temperatures of the electrons, whereas the continuing increase in the heat capacity
s-electrons and their average velocity takes place.
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Figure 1: Dependence of the electron thermal con-
ductivity of gold on the temperature T , the same
for ions and electrons. 1 — on the isochore of
19.3 g/cm3 density; 2 — on the binodal curve con-
sisting of sublimation and boiling curve. S1L1 and
S2L2 segments contain liquid-solid phase transition
region.

Figure 2: Electron thermal conductivity coefficient
of gold in dependence on the relative density x at
three values of temperature T , equal both for elec-
trons and ions. 1 — T = 1000K; 2 — T = 1337 K;
3 — T = 1800 K. SL segments indicate the regions
of liquid-solid phase transition.

Figure 3: Electron thermal conductivity coefficient of gold in dependence on the electron temperature Te in
the 2T -case. Curves 1, 2, 3 refer to the solid phase (1 — at ion temperature Ti = 0.293 kK, 2 — at Ti = 1 kK,
3 — at Ti = 1.8 kK), curves 4 and 5 refer to the liquid phase (4 — at Ti = 2.2 kK, 5 — at Ti = 4.5 kK).
Relative density x = xrt = 1.

5. CONCLUSION

We present analytical expressions of electron thermal conductivity coefficient of gold in dependence
on the electron and ion temperatures and density within the range, characteristic for the interaction
of femtosecond laser pulses with metals. In calculations the electron-electron as well as electron-ion
scattering is taken into account with s- and d-electrons of gold under consideration as well as in
the solid phase and in the melt, with taking into account the jump at the phase transition. These
analytical expressions can be used in two-temperature hydrodynamic and molecular dynamics codes
to study problems of laser ablation of metals.
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