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Abstract. Data on thermal conductivity in states with hot electrons are necessary for the
calculation of ultrashort laser exposure and the behavior of matter near the tracks of fast
particles penetrating the condensed phase. The paper presents new analytical expressions
describing the state of gold with the extra-high heat conductivity within a broad range of
two-temperature phase diagram including the melting curve. This is a region in the three-
dimensional space defined by the electron temperature Te, ion temperature Ti and the density
ρ, at which the thermal conductivity κ is one order of magnitude larger than the value related
to the room temperature. The growth of heat transfer is due to a sharp increase in the heat
capacity of carriers (electrons) when they are heated and, accordingly, the gradual loss of the
degeneracy. The developed model is based on an exact solution of the kinetic equation, involving
experimental data and calculations of the electronic spectrum by the density functional method.
The model works well also at low temperatures Te that allows describing the crystallization of
the melt as it cools down.

1. Introduction

Analysis of the problems of radiation physics requires knowledge of the transport characteristics
of substances in the two-temperature (2T) states [1–7]. Another important set of applications
is associated with ultrashort laser exposure [8–16]. In typical laser applications [9, 11, 14–22],
ablation of substance is studied, when a matter response has two-temperature (2T) stage with
electron and ion temperatures Te ∼ 10–30 kK, Ti ∼ 0.3–10 kK and densities of the order of
a solid-state density. An example of temperature and density instantaneous profiles under the
heating by the laser radiation is shown in figure 1.

In the example, 2T stage is still quite far from completeness; the electron temperature is much
higher than the ion temperature. The instant t = 5 ps is shown. The calculation parameters
are as follows: the absorbed fluence is Fabs = 130 mJ/cm2, a gold target occupies a half-space,
pulse duration is τL = 70 fs, the skin layer has a 15 nm thickness, a Lagrangian coordinate
step is 1 nm. A system of 2T hydrodynamics equations, equation of state and other parameters
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Figure 1. Curves 1–4 represent the binodal, solidus, liquidus and spinodal of gold according
to a multiphase equation of state [23, 24], referring to the plane ρ–Ti. Electron Te and ion Ti

temperatures at the instant 5 ps are shown by the curves 5 and 6, corresponding respectively
to the right and left vertical axes. Thus, all curves belong to the left axis, and the only curve 5
showing the electron temperature distribution belongs to the right axis. This is emphasized by
the arrow near the digit “5”.

used can be found elsewhere [22]. 2T hydrodynamic code, written in Lagrangian variables, is
used. Figure 1 allows us to estimate the size of three-dimensional domain Te, Ti, ρ, where these
parameters are located. It follows from figure 1, that the deviation from the isochore on 2T
stage is associated with the rarefaction wave into the vacuum.

2T equation of state is based on the free energy potential F presented as the sum of electron
Fe and ion Fi contributions: F (Te, Ti, ρ) = Fi(Ti, ρ) + Fe(Te, ρ), where the ion contribution
Fi = Fc(ρ)+Ft(Ti, ρ) is the sum of cold and heat contributions [22–28]. Thus, in a 2T situation
two thermal contributions—electron Fe(Te, ρ) and ion Ft(Ti, ρ) are added to the cold energy Fc.
At zero temperature Te = Ti = 0, the expressions for the free energy and the internal energy
are identical, so we can talk about the cold energy.

Sharp turn of curves 5 and 6 from the vertical direction to the horizontal direction is associated
with the decreasing of density in the rarefaction wave propagating with the speed of sound from
the vacuum boundary. Parent rarefaction wave characteristic is located at the 17 nm depth
at the instant 5 ps (penetration depth is measured from the initial position of the vacuum
boundary). Electron thermal wave moving at 2T stage at supersonic speed penetrates deep
into the semi-infinite target of gold. The point, at which the temperature Te is equal to half-
maximum instantaneous temperature at the instant 5 ps, is at 160 nm depth. Far from the
surface temperature Te and Ti are equal to the room temperature 300 K.

Markers as circles and squares on the curves 5 and 6 show the positions of the points of
uniform Lagrangian coordinate differences. The last two points are detached from the main mass
of Lagrangian points. They correspond to the tail of the rarefaction wave, which is the vapor [29].
Due to the large values of the electron pressure, at an early 2T stage a “cold” evaporation takes
place, i.e. evaporation at high electron temperatures Te, but low ion temperature Ti. Analysis
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of cold evaporation is done in works [15,30].
From a series of calculations with Fabs = 130 mJ/cm2 executed with different steps on the

Lagrangian coordinates, it follows that, at the instant 5 ps, the mass of gold in the evaporated
tail is equal to the mass in a layer of 1.6 nm thickness at the equilibrium density 19.3 g/cm3.
For comparison, at the one-temperature T = Te = Ti vacuum evaporation of gold, heated to
a temperature T = 2 kK (as in figure 1), 3–4 orders of magnitude smaller mass is evaporated
during 5 ps.

As it can be seen, the equation of state, the electron–ion heat transfer and thermal
conductivity (heat wave spread) questions are important for a quantitative description of the
action of femtosecond laser pulses. A new analytical model of heat conduction is presented in
the description below.

2. Scheme of decomposition into components in the 2T model of thermal

conductivity

The importance of the problem of describing the transport characteristics is well recognized,
starting with the work [8]. Theoretical models [9, 12, 13, 31, 32] depart from the Matthiessen
rule (composition of resistivities) and the Drude formulas for the electrical conductivity σ =
nee

2/(meν), and thermal conductivity κ = cev
2/(3ν) with the electron collision frequency in the

form of ν = ATi +BT 2
e .

Coefficient A in the frequency νei of electron–ion collisions is taken from the resistivity of solid
metal, and the electron–electron coefficient B in the frequency νee is determined by the order of
magnitude νee ∼ (EF/~)(kBTe/EF)

2. Here σ, ne, e, me, κ, ce and v are the conductivity, density,
charge and mass of the electron, electronic thermal conductivity, electronic heat capacity per unit
volume and the average velocity of the electrons, respectively. Moreover, the electron–electron
contribution to νee dominates at high electron temperatures.

Our model has the following peculiarities. First of all, it is a neat calculation of electron–
electron interactions using the kinetic theory [12, 26]. In doing this, it is taken into account
the presence of d-band in noble and transition metals. The calculations show that the collision
frequency νee at Te ∼ 1 eV and higher is significantly below than that one given by a rough
estimate of νee ∼ (EF/~)(kBTe/EF)

2. Also, we take into account the jump in the resistance
and density at the melting. The experimental data are taken adjusted for the fact that they
were obtained on the binodal (curve 1 in figure 1) where the density decreases with increasing
temperature (thermal expansion). The results are presented in an analytical form suitable for
the use in 2T codes.

3. Electron–electron contribution

Matthiessen rule on the thermal conductivity κse, due to the scattering of electrons on the s-
electrons is given by 1/κse = 1/κss + 1/κsd, where contributions of s–s and s–d collisions are
presented. At s–d collisions, s-electron interacts with the electrons of the d-band. In principle,
there is a channel of heat conductivity through the d-electrons. Then, according to the rule
of composition of parallel channels the total thermal conductivity is equal to κse + κde. The
calculations show that the contribution of κde is negligible. In figure 2, circles show the results of
calculations of thermal conductivity κse by solving the kinetic equation by the method of [12,26].

The calculations are performed with the Thomas–Fermi screening for the two-parabolic model
of the electron spectrum [12,26]. Parameters of parabolic bands Es = −9.2 eV, E1 = −6.8 eV,
E2 = −1.7 eV are found by using the density functional theory in the package VASP [33]. Here
Es, E1 and E2 are the bottom of the s-band, the bottom of the d-band and the top of the
d-band respectively, measured from the Fermi level. The solid curve in figure 2 gives an analytic
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Figure 2. The dependence of the electron–electron thermal resistivity 1/κse on the electron
temperature Te at normal density x = 1, ρ = ρ0. The continuous curve is calculated by formula
(1), circles mark solutions of kinetic equations. Analytical dependence (1) has the asymptotic
behavior of κse ∝ 1/Te at low temperatures and κse ∝ Te at kBTe ∼ EF.

approximation expressed in mK/W,

1

κse(Te, x)
=

104 x−4/3 a0 t

1 + b0
√
t+ b1 t+ b2 t2

, (1)

where a0 = 9.294, b0 = 0.03, b1 = −0.2688, b2 = 0.9722. We neglect the dependence of κse(Te, x)
on the ion temperature Ti, since in noble metals it is weak [26,34,35]. At a fixed number density
of ions, electronic spectrum rather weakly depends on the phase (solid or liquid) of the metal.
Therefore, we use the approximation (1) in solid and liquid phases alike. In the expression
(1) the normalized temperature t = 6kBTe/EF = 6kBTe/(xEF0), where kB—the Boltzmann
constant, is used. From our calculations [28], it follows that, in the case of gold, at the variation
of compression ratio x = ρ/ρ0 Fermi energy is proportional to the first degree of x: EF = xEF0;
and it is not proportional to x2/3; here EF0 is the Fermi energy at x = 1. Band structure
calculations [28], showing that EF ∝ x, are carried out using the package VASP [33].

4. Electron–ion contribution in the solid phase

Let us consider the contribution to the conductivity σ and thermal conductivity κ, associated
with the electron–phonon interaction in the solid phase:

σsi = nee
2λsi/pF, κsi = cevλsi/3. (2)

We assume that the mean free path length λsi is the same in expressions (2) for σ and κ. In
(2), ne, e, pF, ce, v and λsi = 1/(nΣsi) are respectively number density of conduction electrons,
the electron charge, the Fermi momentum pF = ~(3π2ne)

1/3, electronic heat capacity per unit
volume, average speed and the mean free path, due to scattering by phonons. In addition,

Σsi ∼ u20(Ti/θ), u0 ∼ ~/
√

MkBθ, (3)
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where Σsi is the effective cross section of the electron–phonon interaction and u0 is the amplitude
of zero-point vibrations of the atom with mass M ; n is the atom number density, θ ∝ cSn

1/3

is the Debye temperature, cS is the sound velocity, kD = (6π2 n)1/3 is the Debye wave number.
From the expressions (3), it follows that

λsi ∝ θ2/(nTi). (4)

Thus, when calculating the mean free path (4) and transport characteristics the dependence
of the Debye temperature θ on the dimensionless density x, defined above becomes important.
The fact is that the dependence of the elastic constants and hence the sound velocity on the
density is important. Indeed, the variation of density changes force that returns the atom into
the equilibrium position as it vibrates in the crystalline lattice: potential well holding the atom
becomes wider with a density decrease. Accordingly, the oscillation amplitude, the square of
which defines a cross section of electron–phonon scattering, is changed. Moreover, the speed of
sound and the slope of the potential well are strongly dependent on the density variation, as
spinodal (where cT = 0) is close to the binodal at the phase diagram. Namely, the minimum of
cold curve on the spinodal (see below) is achieved by only 25% stretching with respect to the
equilibrium density.

5. Variation of the density and the Debye temperature

To describe analytically the effect of tension and compression, we need a cold-pressure
dependence upon the density. We represent it as the sum of the attractive (b) and repulsive
(a > b) parts:

pc = An0x(x
a − xb), (5)

where n0 is the number density of atoms in equilibrium at T = 0, p = 0. Parameters in the
expression (5) A = 14.6 eV/atom, a = 3.92, b = 1.95 are defined to reproduce reference
value of the bulk modulus of gold K = 220 GPa under normal conditions, cohesive energy
3.78 eV/atom [36] and the reference value 14.2× 10−6 K−1 of the thermal expansion coefficient
under normal conditions [37]. For these values of the parameters (A, a, b), minimal pressure on
the cold curve (5) is equal to pmin = −26.0 GPa. Pressure pmin is achieved by expanding to
xmin = 0.77. Coordinates of the pressure minimum are consistent with the commonly used data
(xmin = 0.74, pmin = −21 GPa) [38,39].

With binomial formula (5) for cold pressure pc, the expression for the Debye temperature has
the form

θ(x) =
~

kB
cS1kD1x

1/3
√

y(x), (6)

y(x) = [(a+ 1)xa − (b+ 1)xb]/(a− b),

where y ∝ K = ρdpc/dρ, K is the bulk modulus.
In relation (6), the speed of sound cS1 = cS(x = 1) averaged over directions by using the

relation 3/c3S = 1/c3l +2/c3t and Debye wave number kD1 = kD(x = 1) are taken at the equilibrium
density x = ρ/ρ0 = 1, where ρ0 = 19.5 g/cm3—equilibrium density of gold for p = 0, T = 0; cl
and ct are longitudinal and transverse sound velocity in the isotropic solid model

cl =
√

[(1− σP)/(1 + σP)]3K/ρ,

ct =
√

[(1/2)(1 − 2σP)/(1 + σP)]3K/ρ,

here σP is the Poisson ratio.
Later in the analytical formulas, we will use the function

ȳ(x) = (1 + cab)x
α/(1 + cab x

β), (7)
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Figure 3. Comparison of approximation (8) (curve 2) with the binodal (curve 1) taken from
figure 1. Markers “s” and “l” are the ends of the triple point segment from the solid and liquid
phases respectively. To the left of point “l” binodal (curve 1) is called the boiling curve.

α = 2a+ 1, β = a+ 1, cab = (a− b)/(b + 1),

instead of the function y(x). The fact is that the function y ∝ K = xdpc/dx vanishes at the
minimum of cold pressure (5) that is the point of intersection of the spinodal and T = 0 axis. At
lower relative densities x function y(x) becomes negative, and the Debye temperature (6) and the
speed of sound become imaginary. It does not make it possible to perform a through numerical
simulation at low densities that arise in the rarefaction wave and at the substance spallation.
The mass of layers of low density is small; they do not play a significant role in the energy
balance. In addition, our model does not claim to provide for an accurate description of the
thermal conductivity at very low densities. In our problems, it is important to present accurate
kinetic characteristics at moderate (tens of percent) density variations around the equilibrium
value. Parameters of the function ȳ(x) (7) are chosen so that the functions ȳ(x) and y(x) are
close to each other near the equilibrium density x = 1. As it can be seen, the function ȳ(x) (7)
is positive at x → 0.

In experimental data references [37,40,42], electrical conductivity σ and thermal conductivity
κ are given at the binodal 1 in figure 1 as in stationary conditions the tested wire expands when
heated. Let us see how well the binomial expression (5) approximates the curve of sublimation,
the lower segment of the binodal, referring to the solid state, see figures 1 and 3. To do this,
we calculate the Grüneisen parameter G(x) = d ln θ/d lnx with the value of θ (6). We write the
Mie–Grüneisen equation of state [43]. As a result, we find the equation of zero-pressure isobar:

pc(n) + 3G(n)nkBTi = 0 (8)

or A(xa − xb) + 3G(x)kBT = 0, if we use binomial expression for pc (5). Zero isobars equation
p(ρ, T ) = 0 coincides with the curve of sublimation, if we neglect the insignificant vapor pressure
(below the triple point pressure of the vapor is much less than pressures ∼ 1 GPa, interesting
for us in connection with the laser applications.

Figure 3 shows a comparison of the approximation of sublimation curve (8) obtained by the
use of expression (5) for cold pressure with the sublimation curve from the wide-range equation
of state [23, 24]. As we can see, there is a good agreement of the two curves. In figure 3,
sublimation curve from [23,24] is a segment between the points x = 1, T = 0 and “s”; horizontal
line “r.t.” corresponds to a temperature 300 K.
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Figure 4. Comparison of total (s + d), and partial (s) electronic heat capacity. Heat capacities
cs and ctotal are calculated by using the two-parabolic approximation of the electron spectrum
with the parameters specified in the sidebar. Here Es = EF0 is a bottom of the s-band, measured
from the Fermi level, E1 and E2 are edges of the d-band. The calculation is performed at x = 1.

6. Conductivity and thermal conductivity of the crystalline gold

As mentioned, our goal is to obtain analytical expressions for the transport coefficients of gold
in two-temperature (2T) states. Moreover, these expressions must describe 2T, as well as the
one-temperature (1T: at Te = Ti = T ) states, because hydrodynamic code describes the current
situation from 2T stage with hot electrons and 1T stage of melt cooling and recrystallization.
The desired expression for the thermal resistance in the solid phase has the form

1/κsol = 1/κse + 1/κsolsi . (9)

In the expression (9), electron–electron contribution to the thermal conductivity κse is given by
equation (1). As mentioned in section 3, the contribution of d-electrons in the heat transfer is
small. Therefore, in the expression (9) electron–electron contribution is indicated by the index
se, which means the s-electron scattering on the s- and d-electrons.

Coefficient of thermal conductivity due to electron–ion collisions in a solid (solid state is
indicated by the top index “sol”) phase κsolsi in the expression (9) is calculated by the formula

κsolsi = (1/3)nkBC(t)vFλsi, (10)

ascending to expression (2). In formula (10), a dimensionless factor C(t), where t =
6kBTe/(xEF0), is selected, which comprises the dependence of heat capacity and average speed
of s-electrons upon the electron temperature Te (and x). The heat capacity of the s-electrons is
calculated in the framework of the two-parabolic approximation of the electron spectrum [12]
and significantly differs from the total electron heat capacity of gold, see figure 4.

For an average speed of s-electrons, we take the value of v = vF
√

1 + 3kBTe/(2xEF0). Fermi

velocity vF = pF/m∗ depends on the number density through the Fermi momentum pF ∝ n1/3

and the effective mass m∗, which at EF ∝ n satisfies the condition m∗ ∝ n−1/3, so

vF = vF0 x
2/3, (11)

where vF0 is the Fermi velocity at x = 1. The mean free path of electrons at s–scattering
by phonons in the solid phase λsi is expressed in terms of the Debye temperature by formula
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(4). Debye temperature θ can be represented as an expression close to (6), but we replace the
function y(x) with the function ȳ(x) (7), which does not change the sign for expansions outside
the spinodal. As a result, we obtain

θ2(x) = θ2(1)x2/3 ȳ(x).

Accordingly, for the electron mean free path at the electron–phonon scattering we obtain

λsi ∝ ȳ(x)x−1/3T−1
i . (12)

We introduce the value
κ0(t) = (1/3)n

2/3
0 kBC(t)vF0,

having the thermal conductivity dimension. Then, from the above formulas (10), (11) and (12)
we obtain

κsolsi ∝ κ0(t)x
4/3ȳ(x)T−1

i .

The function κ0(t) was calculated for crystalline gold at x = 1. The resulting dependence of the
normalized electron temperature t can be approximated by

κ0(t) = 131 t (1 + 3.07 t2)/(1 + 1.08 t2.07),

κ0 is given in W/(mK). We denote xrt = 19.3/19.5 relative density of gold on the sublimation
curve at room Trt = 0.293 kK temperature. Considering also that the experimental value of the
thermal conductivity under these conditions is equal to 318 W/(mK), we obtain the coefficient
of the electron thermal conductivity in units of W/(mK) when electron–phonon scattering in
the solid phase

κsolsi (Te, Ti, x) = 318

(

x

xrt

)4/3 ȳ(x)

ȳ(xrt)

Trt

Ti

κ0(t)

κ0(trt)
, (13)

where trt = 6kBTrt/(xrtEF0).
In a similar manner an expression for the resistivity of r = 1/σ of solid gold is derived.

Rewrite (2) by using formula (4). As a result, we obtain

r = [(3π2)1/3/(2π)]R0n
2/3/λsi ∝ x1/3Ti/θ

2,

where R0 = h/e2 = 25812.8 Ω is a quantum of electrical resistance. Taking into account the
formula for the Debye temperature (6), in which the function y(x) is replaced by ȳ(x), we have

r(Ti, x) = rrt
Ti

Trt

(xrt
x

)1/3 ȳ(xrt)

ȳ(x)
, (14)

where rrt = 22.14 nΩm is a gold resistivity at room temperature.
Figure 5 shows the resistivity behavior obtained by the use of formula (14), together with

the experimental data [42]. The dashed curve shows the temperature dependence of the
resistivity r(T, xrt) for the isochore ρ = 19.3 g/cm3. The solid curve corresponds to the
dependence of the resistivity upon temperature along the curve of sublimation, it takes into
account the effect of thermal expansion of gold. Sublimation curve is given by the expression
xbin = 0.852 + 0.105

√
1.98 − T . As one can see, the calculated values for the binodal are

in a good agreement with the data [42]. Comparison of resistivity for isochore and binodal
(sublimation curve) shows that the thermal expansion makes a governing contribution to the
difference between the solid and dashed curves.

Figure 6 indicates the dependence of thermal conductivity (13) on the temperature. Here
calculations at the relative density isochore xrt (dashed curve) and the binodal (solid curve) are
presented. The dots show the experimental data taken from handbooks [37,40].
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Figure 5. The resistivity of gold in the solid state depending on temperature in the equilibrium
one-temperature case. The solid curve—resistivity at the sublimation binodal, dashed curve—at
isochore 19.3 g/cm3, both calculated according to formula (14). Also experimental data [42] (full
circles) are shown.

Figure 6. Comparison of thermal conductivity on the binodal (solid curve) and normal density
isochore (dashed curve) with the experimental data (large circles—[37], small points—[40]). The
thermal conductivity was calculated according to formula (13).

7. Electron–ion contribution in the liquid phase

We calculate the thermal conductivity of 2T molten gold. Electron–electron contribution is still
given by (1). We need to write the approximation expression for the contribution of the electron–
ion scattering. Assuming that in the liquid phase electron mean free path λl due to the electron–

ion scattering can be written, as in the solid phase, in factorized form λl = n
−1/3
0 W (Ti)x

β, and
again using the value κ0(Te, x), we have for the coefficient of thermal conductivity

κliqei (Te, Ti, x) = κ0(Te, x)xx
2/3W (Ti)x

β .

Drude formula for resistivity gives

r(Ti, x) =
pF

ne2λl
=

(3π2)1/3

2π
R0

n
1/3
0

n2/3W (Ti)xβ
=

r0
x2/3W (Ti)xβ

.

Here r0 = (3π2)1/3R0/(2π)n
−1/3
0 = 3254 nΩm. Designating γ = β + 2/3, we have

r(Ti, x) =
r0

W (Ti)xγ
.
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Figure 7. Electron thermal conductivity coefficient of gold as a function of the temperature
T , the same for ions and electrons: 1—on the isochore of 19.3 g/cm3; 2—on the binodal curve
consisting of sublimation and boiling curve.

According to quantum molecular dynamics calculations [41] we take γ = 2. Function W (T ) can
be found by the use of known experimental dependence rl(T ) of the resistivity of gold upon the
temperature along the boiling curve xl(T ) [37], so that

W (T ) =
r0

rl(T )x
γ
l (T )

.

Boiling curve for the temperature T in kK is given as

xl(T ) = 0.887179 − 0.0328321(T − 1.337) − 0.0030982(T − 1.337)2 − 0.000164884(T − 1.337)3

with a resistivity in the units of nΩm on it

rl(T ) = 148.5 + 119.3T15.337/(14 + T ),

which coincides with the known experimental data and tends to the minimum metallic
conductivity in strongly disordered ion system at high ion temperatures.

Then we obtain the coefficient of thermal conductivity in the liquid phase due to electron–ion
collisions in the form

κliqei (Te, Ti, x) = κ0(Te, x)
r0

rl(Ti)
x

(

x

xl(Ti)

)γ

.

The total thermal conductivity coefficient in liquid phase is given with taking into account κse,
so that the heat resistivity is

1/κliq = 1/κse + 1/κliqei . (15)

Figure 7 shows the electron thermal conductivity of gold depending on the temperature for
one-temperature situation in the state of thermal equilibrium between electrons and ions on
the binodal curve covering the sublimation and boiling curve, as well as on the normal density
isochore. Phase transition leads to a jump in the thermal conductivity on the binodal and
slightly more smooth transition from its value in the solid phase to the value of the melt on
isochore.

Electronic thermal conductivity in two-temperature situation, characteristic for the
interaction of ultrashort laser pulses with metals, as a function of the electron temperature
for several values of the ion temperature in both the solid and liquid phases is shown in figure 8.
The nonmonotonic behavior of the coefficient of thermal conductivity in the solid phase at
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Figure 8. Electron thermal conductivity coefficient of gold as a function of the electron
temperature Te in the 2T-case. Curves 1, 2, 3 refer to the solid phase (1—at ion temperature
Ti = 0.293 kK, 2—Ti = 1 kK, 3—Ti = 1.8 kK), curves 4 and 5 refer to the liquid phase (4—
Ti = 2.2 kK, 5—Ti = 4.5 kK). Relative density x = xrt = 19.3/19.5. Red points show results
obtained by the quantum molecular dynamics in [44] for the case x = 19.3/19.5, Ti = 300 K.

relatively low ion temperatures is due to significantly weaker increase of the electron–electron
collisions as the electron temperature increases above 10 kK than at lower temperatures of the
electrons, whereas the continuing increase of the heat capacity of s-electrons and their average
velocity takes place.

8. Conclusion

Electron thermal conductivity coefficient of gold depending on the electron and ion temperatures
and density is obtained in the analytical form suitable for use in two-temperature hydrodynamic
and molecular dynamics codes. Both the electron–ion and electron–electron scattering are taken
into account [12, 26] in the metal with s- and d-electrons. The analytical expressions allow
calculating the coefficient of electron thermal conductivity in a wide range of electron and ion
temperatures as well as densities, which is of interest in the problems of laser ablation of metals
as in the solid phase as in the melt, taking into account the jump at the phase transition.
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