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POWER INTERACTION
WITH MATTER

FROZEN NANOSTRUCTURES PRODUCED BY ULTRASHORT LASER PULSE

Khokhlov V. A.' *, Inogamov N. A.', Anisimov S.I.', Zhakhovsky V. V.2, Emirov Yu. N.3,
Ashitkov S. 1.2, Komarov P.S.2, Agranat M. B.?

LITP RAS, Chernogolovka, 2JIHT RAS, Moscow, 3AMERI FIU, Miami, United States
*V_A_Kh@mail.ru

Surface nanostructures, arising under the influence of a short laser pulse on a metal target as
a result of nucleation, stretching and then freezing of foam-like material in the surface melt, are

considered.

Keywords: Short pulse laser ablation, surface nanostructures, frozen nanofoam

Introduction. When we speak of the surface struc-
tures arising under laser irradiation, the first thing that
usually comes to mind is a regular ripple-like structure
arising from the interaction of the incident and surface
electromagnetic waves. The properties of such struc-
tures are defined by the resonance condition between
the incident and surface waves. Further, such struc-
tures will not be considered.

We will study irregular structure, the cause of which,
as a rule, is the development of thermal and hydro-
dynamic inhomogeneities. A typical representative of
such structures is a foam-like structures remaining on
the surface of the target after a short laser pulse.[1]

Experimental results [1]. In the described exper-
iments the study of deformation of the target surface in
the area, heating by femtosecond (100 fs) pulse (FLP)
of Cr:forsterite laser system, was performed using fem-
tosecond interference microscopy.[2] There is a crater
on the target surface after exposure in the case if laser
fluence in spot center F,. exceedes ablation threshold
Fyp. Fig. 1 shows an example of the crater interfero-
gram at F. > Fg. The structure of the surface layer

Figure 1. Interferogram of the ablation crater on the sur-
face of an aluminum target after exposure to FLP. Rect-
angle shows a face of the membrane which was cut by the
electron beam (schematically, not to scale vertically, the
membrane thickness is L = 150 nm)

of the target with a residual deformation was inves-
tigated by Transmission Electron Mitcroscopy (TEM)
by preparing a thin membrane (shown schematically
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Figure 2. Subsurface structure of an aluminum target
with nanocavities, which were formed from the cavitation
bubbles ensemble during the freezing of the melt. The im-
age of the membrane plane on TEM is shown.

in Fig. 1, which is then analyzed by a transmission
microscope Technai TF 20. As a result there the exis-
tence of nanocavities observed inside deformed surface
layer, Fig. 2

2T stage. Fast heating of electrons by short laser
pulse converts the metal in two-temperature (2T) state
with the electron temperature T, is much greater than
the ion (phonoh) temperature 7;. An underlying con-
cept of 2T state of metal with hot electrons and cold
ions was suggested in the paper [3]. To solve 2T
heat conduction equations the accurate values of an
electron-ion coupling parameter « [4-6] and electron
heat conduction x,x = k/ce [5-7] are required, here
ce is electron heat capacity. The required data have
been obtained from solutions of kinetic equations in
T-approximation [6, 7]. Reliable description of the 2T
conduction is necessary since kop ~ 102 WK 'm™! is
very high (far beyond k17 ~ 100 WK 'm!) and &
together with o defines thermal depth dr ~ \/X2rleq
~ 100 nm. Thus dp turns out few times larger than
an optical skin depth ¢ ~10-20 nm.[8] Here t.q ~ ¢;/
~ 2 — 10 ps is an electron-ion temperature equilibra-
tion time, ion heat capacity ¢; = 3kpnatom, @ ~ 1017
WK tm3 [4, 6], dp ~ vpy/TeqTe, Te = 1/Ve, where vp
is Fermi velocity, v, = Ve; + Vee is electron collision
frequency.

Within a 2T stage, which lasts {.q, the speed of
heat propagation (thermal wave) is very large vy, ~
cs(vp/cs)\/Te/t because Fermi velocity vp and its
Mach number are large Map =vp/cs ~ 100. For flu-
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Figure 3. Spatial distributions of temperatures of ion sub-
system 7;, electron thermal flux g. taken with inverse sign,
and power of electron-ion energy transfer We; per unit of
volume. Al film was irradiated from the left side through
a glass substrate. Initially glass was at < 0, Al film was
placed 0 < x < 1.2 um. Laser pulse has duration 77, = 100
fs, time is reckoned from a maximum of a pulse, energy
Fops =0.13J/ cn? is absorbed in a skin layer of § = 15 nm.
Arrow 1 marks shock in glass. We neglect light absorption
and heat conductivity in glass. Therefore, the ion heating
Wei decreases sharply at the glass-Al interface.

ences near and higher than the ablation threshold F,
which is few times higher than melting threshold F,,,
the velocity of melting front v, is also large v,, ~ v¢p,.
It should be noted that for such a case it is not possi-
ble to utilize the Stefan problem for estimation of heat
penetration in the 2T stage. Indeed, 2T system can-
not provide a finite heat flux (into solid) concentrated
in the point M, where M is an instantaneous melting
front position in Stefan problem approximation, be-
cause energy release via electron-ion energy transfer
Wei = a (T, — T;) is spatially distributed and there-
fore the electron heat flux g, = k(9T /dz) is contin-
uous, see Fig. 3. In Stefan problem the melting zone
tightens into a propagating point M where a jump of
thermal flux {7, } supplies energy necessary for melt-
ing of solid in a point M moving with finite velocity
v = {KkT:}/pA, where X is latent heat of fusion per
unit mass, p is density of solid prior to influx into point
M. Figure 3 shows result from hydrodynamic simula-
tion including 2T heat balances and elastic properties
of solid. Arrows ”L” and ”S” give instant positions of
liquidus ”L” and solidus ”S”. On the thermodynamic
phase diagram they bound solid-liquid mixture zone.
Outside the mixture zone the electron-ion local energy
flux W; is spent only for heating of ions. While inside
the zone the flux is spent for heating of mixture simul-
taneously with expenses going to increase fraction of
liquid in mixture. Therefore, the T; profile has kinks
on liquidus ”L” and solidus ”S”.

Let’s call the front "L” marked in Fig. 3 as a melt-
ing front, because there is pure liquid to the left side
relative to this point. At a moment shown in Fig. 3
the front velocity is 63 km/s! This is hypersonic veloc-
ity, therefore, liquid do not have time to decrease its
density after melting (isochoric regime), and ion pres-
sure increases during fast heating (expansion release is
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Figure 4. Melting and isochoric curves of Al together with
profiles at 2T (¢ = 0.5 ps) and hydrodynamic (¢ = 20 ps)
stages. The end point 3’ sits inside a melt. Its position is
x =95 nm (¢t = 20 ps). The T, p values for inner melt and
glass (z < 95 nm) are not shown for ¢ = 20 ps.

too slow at this time scale). This is a reason why the
melting temperatures T; in points ”L” and ”S” in Fig.
3 are higher than the triple point temperature 0.934
kK for Al. Profiles of thermo-mechanical flow on the
phase plane T — p are shown in Fig. 4. Within the 2T
stage at t = 0.5 ps the profile 1-S-1.-2 is almost coin-
cide with a curve corresponding to initial density of Al.
The point 1 gives a room temperature state of Al far
from glass-Al boundary. The points S and L present
solidus and liquidus, as in Fig. 3. Maximum of T; (the
point 2 in Fig. 4) is achieved near a glass-Al boundary,
see Fig. 3. Dependence p;(T;) at t = 0.5ps is shown as
the profile 1-S-L-2 in Fig. 4. This curve can be pre-
sented also in a parametric form: T;(x), p;(x). Near a
boundary the density of Al drops due to expansion in
direction of glass. At this early stage the expansion of
Al is driven mainly by electron pressure pe.

Spatial positions of point S and L at pressure p; and
temperature T; profiles in Figs. 3 and 4 coincide during
supersonic propagation of heat. Images of those points
on pressure profile in the hydrodynamic "h” stage are
marked as Lj, and S, in Fig. 4. The "h” stage fol-
lows the 2T stage. At the "h” stage those images are
split off from their positions in 2T stage - comp. Ly,
Sy, versus L, S in Fig. 4. The images propagate along
acoustic characteristics carrying values of pressure cor-
responding to isochoric melting. But temperatures in
points L, and S, decrease during propagation because
the points move to the right along the x axis, as shown
in Fig. 3, and temperature decreases in this direction.
As a results, a gap between the (Lj, Sp,) and (L, S)
line segments is formed on the T — p plane. We re-
fer to this process as emission of compression wave by
decelerating thermal wave.

Let’s mention also an inverse behavior of ion tem-
perature between points S’ and L’ in Fig. 4. The
points S’ and L’ belong to a melting curve but not to
an isochoric curve, see Fig. 5. Distribution of ther-
modynamic parameters along the spatial profile inter-
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Figure 5. Layer of molten Al near glass-Al boundary.
Electrons transfer energy from a hot place and therefore
become colder than ions in this hot place. This picture is
interesting since it shows how the 2T case T. > T; tends
to a limit where description through Stefan task becomes
valid in metals: ce/c; K 1, ke/ki > 1.

sects a two-phase solid-liquid melting zone along dif-
ferently directed line segments on a thermodynamic
phase plane. On a p — T plane those segments rotate
from isochoric to isobaric directions during transition
from 2T to 1T flow. The feature with inverse depen-
dence of T; in Fig. 5 isn’t connected with mechanical
reasons - namely, with a release of shear stress in a
melting zone. It also exists in the pure plastic hydro-
dynamic simulations, see Fig. 5 in [8]. This feature
is linked to the finite heat of fusion and expenses of
energy on melting. Small deviations from exact local
equilibration T, = 7; remains in 1T stage, see Fig.
5. They are necessary for thermal transport from hot
to cold places, because ion heat capacity c; is larger
than electron capacity c. while heat in metals is car-
ried mainly by electrons (ratio of thermal diffusivities
Xi/Xe is small).

Resolidification and surface nano-structures
Time scales of thermal and hydrodynamic processes
taking place in a surface layer of target are: t.q ~2—7
ps — duration of 2T stage; tpq ~ 20 ps — hydrody-
namic stage; ts; — stopping of motion near surface; and
tsoi ~ 1 ns — solidification of molten metal. For flu-
ences higher than the nucleation threshold F' > F o
[1] the scale ts increases sharply from small values
~ tpq to a nanosecond time scale. This is caused
by large difference in rigidity between continuous melt
and foam-like material. In case with bubbles the near
surface velocities drop down to ~ 10 — 100 m/s for
F > F,.q and t ~ 1 ns. Thus, t,; becomes ~ tg
and situations with freezing of slowly moving nano-
structures may realize [1]. The corresponding pic-
ture of frozen bubbles beneath the surface obtained in
molecular dynamics (MD) simulation [9, 10] is shown
in Fig. 6.

A result of analysis a wide range of MD calcula-
tions for different levels of pumping energy they can
be devided into three qualitatively different segments:
(1) F< Fnuch (11) Fnucl <F< Fabl and (111) Fabl < F.
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Figure 6. Expansion and freezing of foamed aluminum.
As a result of electron cooling of molten surface layer the
resolidification front moves up through continuous melt and
reaches the bottoms of bubbles. Due to supercooling of
surface liquid at later time, solid nuclei are also formed
inside the melt and at free surface. (a) cavitation in liq-
uid surface layer shown on density map; (b-e) atomic order
parameter shows phase state of material: green colors cor-
respond to solid state, while red colors correspond to liquid;
(c) crystallization begins at liquid-solid interface first, then
in bulk of supercooled melt and at free boundary of melt;
(d) crystallization of foam walls initiated by formation of
solid nuclei on free liquid surfaces of walls; (e) liquid walls
are broken, a tiny droplet forms at the end, and liquid jet
moves back to the target along partially frozen pike.

Figure 7. Focused ion beam/transmission electron mi-
croscopy (FIB/TEM, lamella technique) cut of nickel sur-
face. The lamella has been taken from a lateral part of a
crater produced by a single optical laser shot. The grey
layer on the top is a protecting layer of Pt organic. Dark
knobs are frozen jets. Bright crescent are deformed frozen
nanobubbles similar to the bubbles observed in Al target,
see Fig. 2

In case (ii) “frozen foam” can be observed, see Fig. 7

In the paper [1] fluence corresponds to the case (iii),
in the central region of the laser spot and the case (ii)
on the periphery.

In the case (iii) we call such structures “frozen bro-
ken foam”.

Such structures is obtained also with X-ray lasers
[11, 12]. In the X-ray case the plasmonic effects are
negligible. Therefore, the X-ray structures remain
chaotic (no ripples) after any number of laser shots
N. The performed experiments confirm this.

Optical lasers produce similar structures [13-17].
Our analysis shows that they appear if F' > F,,, and
N ~ 1.

This is a key explaining thermo-mechanical mecha-
nism of appearance of chaotic surface nano-structures.
The existence of similar structures and a wide range



of wavelengths of laser from the optical to the X-ray
confirms their thermo-mechanical fluctuation nature.
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