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ELECRTON-PHONON SCATTERING AND RELATED ELECTRICAL CONDUCTIVITY IN
NOBLE AND TRANSITION METALS AT HOGH ELECTRON TEMPERATURE

Petrov Yu. V.,* Inogamov N. A.
ITP RAS, Chernogolovka, Russia
*uvp49@mial.ru

Electrical conductivity of noble and transition metals due to the electron-phonon collisions is
calculated in two-temperature state with hot electrons and ion temperature not exceeding the
melting threshold. This state arises when the femtosecond laser pulse of the moderate intensity

acts onto the metal surface.

Calculated electrical resistivity shows reduction with the electron

temperature increase in contrast to the ordinary growth of the electrical resistivity of metals with
the increase of common temperature of electrons and ions in equilibrium state. This decrease of
the electrical resistivity is more significant in the case of transition metals.

Keywords: Femtosecond laser pulse, two-temperature state, noble and transition metals, electrical

resistivity, electron-phonon scattering

Introduction. When ultrashort (femtosecond)
laser pulse acts onto the metal surface it causes first
of all the increase of the electron temperature. Large
difference between electron and ion masses retards the
energy transfer from electrons to ions. That is why
during some time interval the surface layer of matter
irradiated by the laser pulse exists in two-temperature
state with the high temperature of electrons 7, and
smaller temperature of ions 7; [1]. For laser pulses
of moderate intensities with the surface density of en-
ergy (fluence) taken up by the metal target up to 100
mJ/cm? electron temperature in the surface layer of
a target reaches several eV [2]. At the same time the
equalization of electron and ion temperatures may last
several picosecond, during a time interval more long
than the duration of the laser pulse. Elevated electron
temperature results in the significant change of the ki-
netic transport characteristics of a metal which are due
to the electron motion. The values of kinetic coeffi-
cients at high electron temperatures may to a great
extent differ from that one at usual room temperature
when the equilibrium between electrons and ions takes
place. Increase of the electron temperature gives rise
to the change of the electron-ion coupling coefficient
«(T.), which is responsible for the energy exchange be-
tween electrons and ions to give the energy transferred
from electrons to ions per unit time as a(T.)(Te — T;)
[3-5]. Electron-phonon coupling determines the depth
of the layer of a target heated by the laser action be-
fore the sensible change of the target volume together
with the another kinetic parameter—electron heat con-
ductivity coefficient. In metals under consideration
heat propagates mainly by electrons. Both electron-ion
and electron-electron collisions contribute to the heat
conduction. The change of the frequency of electron-
electron collisions with the electron temperature in-
crease have been calculated in [6, 7]. Now we consider
electron-phonon collisions and their contribution into
the transport coefficients of metals in two-temperature
state at high electron temperatures and ion tempera-
tures not exceeding the melting threshold, namely elec-
trical conductivity.

Electron-phonon relaxation times. As a targets
for the femtosecond laser irradiation we take metals
with the essential excitation of d-electrons at high elec-
tron temperatures arising in metal when heating the
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electron subsystem by irradiation. They are noble met-
als having at T, = 0K completely filled d-band with
the top separated from the Fermi level lying within the
s-p-band by the energy interval not exceeding the value
1-2 eV which is of the order of the gap in many semi-
conductors (as an example we consider copper (Cu)).
Another situation exists in transition metals in which
the Fermi level occurs inside of d-band as well as inside
of sp-band (we consider iron (Fe) to present transition
metals). We use the kinetic equations for sp and d-
electrons in the electric field [8] taking into account
collisions of all these electrons with phonons to ob-
tain within the 7-approach relaxation times 7, and 74
of respectively sp and d-electrons due to the electron-
phonon scattering:

ms/maHsq + Haqg + Gas
Hss + Hsd)(Hdd + Gds) - Hsdes

7s(e) = ( (1)

md/msts + Hss + Gsd
Hss + Hsd)(Hdd + Gds) - Hsdes

Ta(€) = ( (2)

Expressions (1) and (2) define relaxation times of sp
and d-electrons at those values of the electron energy
when transition between sp and d-bands is possible.
When the electron energy is sufficient only for sp-sp
scattering, relaxation time of sp - electrons is simply

Ts(e) = 1/Hgs (3)

Here
2
q 2m
H,, = — 2N, +1)———=m; 4
o= [N+ Vo mady )
B P+ — ¢ 0
o= [ wla)E P N, + 1) maads
(5)
Gua = / (@@N, + 1) 2" maqdg  (6)
sd — ) w q q p(27rh)3mdq q
Analogously
2
_ g 2m
Hyq = /w(q) 22 (2Ng + 1)p’(27rh)3mdqdq (7
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(8)
(9)

2
p'(27h)3

2w

Wmsqdq.
mg, mg are respectively effective masses of sp and d-
electrons. We use the parabolic approach of electron
dispersion curves both in sp and d-bonds having differ-
ent tops and effective masses to approximate electron
density of states obtained from the density functional
calculations. ¢ is phonon quasimomentum,

1
exp(Tiw(q)/(KT;)) —

is a phonon distribution function at the temperature
T; (w(q) - phonon frequency).
4 Zne? ) ?

7Tq2
Wy = — | ———
T w \ ¢?e(g)

with n being the concentration of atoms, €(q) - dielec-
tric permittivity, Z is the effective charge of ion for
its interaction with the electron through the screened
Coulomn potential. p stands for the electron momen-
tum in s-band, p’ is the momentum of electron of d-
band. When transition between sp and d-bands occurs
as a result of electron-phonon interaction, p and p’ are
connected by the relation

Ny =

mda s,
e 4

S

p2

= 2mg(e1 — €s),
where €5 and €1 are bottom of sp and d-bands respec-
tively.

By integrating over ¢ in formulas (4-9) within the
corresponding interval depending on the value of elec-
tron energy € we obtain the relaxation times 74 of sp
and 74 of d-electrons as functions of their energy. Then
substituting them into the expressions for conductivity
of sp and d-electrons

s = 2 (p>2 LA
! my) 4kT.cosh?(S7) * (2h)3”
o= 26 / (19’)2 R
1773 ma ) AkT.cosh?(S7E) A 2rn)3

we can calculate electrical conductivity and resistiv-
ity due to sp and d-electrons and total resistivity con-
nected with the electron-phonon scattering.

Resistivity of copper and iron due to the
electron-phonon collisions. Fig. shows results of
calculation of the resistivity of noble metal copper as
the function of electron temperature for two values of
the ion temperature (300K and 1200 K), not exceeding
the melting temperature.

More impressive fall of resistivity with the electron
temperature growth exhibits iron, one of a sufficiently
large group of transition metals. The dependence of
iron resistivity on the electron temperature for the
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Figure 1. Electrical resistivity of copper at elevated tem-
perature of electrons 7. for two values of the ion tempera-
ture 300K and 1200K. Resistivity drops with the electron
temperature increase.
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Figure 2. Resistivity of Fe in dependence on the tempera-
ture of electrons. It is obvious more significant drop of the
clectrical resistivity of iron than of copper in Fig. with the
electron temperature increase. lon temperature 7T; takes
the values 300K and 1200K.

same values of temperature of ions (300K and 1200K)
is presented in Fig. 2. The fall of resistivity of metals
with conducting d-electrons at high electron temper-
atures can be explained by the reduction of electron
scattering into the d-states because of the shift of the
occupancy of electron energy states into high energy
states and small phonon energy.

In addition in Fig. 3 results of calculation of Cu and
Fe resistivity in dependence on the common for elec-
trons and phonon temperature in equilibrium single
temperature case are shown. Resistivity of metals un-



der consideration in this case rises by the ordinary way
as the temperature increases.
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Figure 3. Calculated dependence of the resistivity of cop-
per and iron due to the electron-phonon scattering upon
the temperature of the metal in equilibrium case. Resistiv-
ity grows with the temperature increase.
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