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TWO-TEMPERATURE EQUATIONS OF STATE FOR D-BAND METALS IRRADIATED
BY FEMOTOSECOND LASER PULSES

Migdal K. P.' *, Petrov Yu. V.2, Zhakhovsky V. V.', , Inagamov N. A.?
L VNIA, Moscow, 2 ITP RAS, Chernogolovka, Russia

*migdal@vniia.ru

The cold curves for energy and pressure of Copper, Iron, and Tantalum were obtained using
methods of the density functional theory. Hydrostatic and uniaxial deformations in the range from
double compression of the initial volume per atom to double stretching are considered. Allotropic
transformation from a-phase of Iron to the hexaferrum with the growth of pressure is found at
pressure of 13 GPa. We also obtained cold curves for two-temperature states in which crystal
lattice at OK and hot electrons are in the range from 1 kK to 55 kK. The behaviour of electronic
internal energy, pressure, and density of states is investigated in the volume and temperature
ranges mentioned above. The maximum hydrostatic strains and the types of lattice instabilities
were theoretically predicted for the considered metals. At the first time the effecy of high electronic
temperature on the electronic heat conductivity and electric resistivity is calculated for transition
metals by the approach based on Boltzmann kinetic equation in 7-approximation.

Keywords: two-temperature state, phase transition in Iron, density functional theory, femtosecond

laser

The femtosecond laser irradiation with optic wave-
lengths and moderate intensities acting on a metal sur-
face is considered. With regard to metal the laser pulse
energy is absorbed by free electrons on a depth of a
skin layer. In this layer non-equilibrium energy distri-
bution exists between electrons and ion lattice. In the
present experimental data and theoretical calculations
one have been demonstrated that a few picoseconds are
required for electron-ion equilibration. The duration of
electron-electron relaxation is order of magnitude 100
fs. We can consider surface layer as electron and ion
subsystems, where the former obeys Fermi-Dirac dis-
tributions and has a temperature signifficantly greater
than a temperature of the latter which is close to the
metal initial temperature, ~ 300K. This approach is
valid in the case of the relation between two relaxation
times mentioned above. During the two-temperature
state (2T) a spatial distribution of atoms in lattice
is constant because the electron-ion relaxation time is
less than the typical time of acoustic unloading. Tak-
ing into account this circumstance we carried out the
DFT calculation of electron thermodynamics proper-
ties for some metals in the wide range of electron tem-
peratures and considered deformations. The similar
volume and electronic temperature ranges have been
considered in recent works [1, 2].

The influence of strong hydrostatic and uniaxial
strains and compressions was investigated in the cold
curve calculations for metals using DFT and tak-
ing into account probabilities of allotropic transforma-
tions.

Calculation method The cold curves of internal
energies F and pressures P for metals with zero lat-
tice temperature are obtained for Cu (fcc lattice), Fe
(bce and hep), and Ta (bee) in the range from double
compression to double expansion using the DFT code
VASP [3, 4]. We used PAW pseudopotentials with
LDA and PBE forms of exchange-correlation func-
tional. In the latter case the closest to the conduction
bands for each metal p-electron band is additionally
considered. Other used parameters: plane waves cut-
off is 500 eV, 213 Monkhorst-Pack grid, and the num-
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ber of free electron states is equal or greater than 20.
These parameters were chosen as the result of conver-
gence check and guarantee that convergence error is
not greater than 1 %.

The validity of the value of expanded volume where
metal lattice becomes unstable was approved by the
DFT calculation of elastic moduli. The cutoffs were
enlarged up to 600 ¢V (Cu), 800 eV (Fe), 650 ¢V (Ta).
The obtained values for elastic moduli for some metal
speciffic volumes at hydrostatic expansion allow to de-
termine the type of lattice instability which is the rea-
son of metal breakdown. The presence of hot electrons
have been took into account with the use of smearing
value and the Fermi-Dirac smearing was used. We car-
ried out the calculation of 2T equations of state in the
range from double compression to double expansion for
electron temperatures up to 55 000K.

The results and comparison with experimen-
tal data. On the Fig. la the obtained cold curve for
Cu is compared with the data of experiments [7, 8]
in the case of compression. As we can see all curves
are close to each other and the PBEpv curve is in
better agreement with experimental data than other
curves. The PBEpv curve for hep (solid line) and bee
Fe (dashed line) is compared with the experimental
data [13] obtained by ramp wave compression (RWC)
method. This method allow to obtain the values of
pressure for solid matter which cannot be achieved us-
ing previously used technique. In [13] the new record
for solid Fe was received—560 GPa. It is necessary to
notice that the dependence of pressure from compres-
sion obtained in this work not pure experimental curve
but the result of experemental data treatment with the
help of QMD simulation and Debye model. The anal-
ogous comparison for Ta is shown in Fig 1a where the
experimental and FP-LMTO calculation data are in
good agrement with our results (mainly PBEpv curve).

The dependences of Gibbs energy from pressure for
bce and hep lattices of Fe are shown on the Fig 2a in
the range of o — € allotropic transformation search. As
the result of this search the pressure of bee-hep trans-
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Figure 1. Left panel. The calculated pressure from density for compressed Cu using LDA (dash), PBE (dash-dot), and
PBEpv (solid) pseudopotentials compared with the results of experiments [7] (open diamonds)[8] (thick crosses) Middle
panel. The pressure from atomic volume for hep (solid) and bee (dash) compressed Fe calculated with the help of PBEpv
pseudopotential and the result of recent ramp wave compression experiment [13] where anharmonic approximation for
Debye-Waller factor calculation have been used. Right panel. The calculated pressure from density for compressed Ta
using LDA (dash), PBE (dash-dot), and PBEpv (solid) pseudopotentials compared with the results of experiment [7] and
FP-LMTO calculation [14] (thick crosses).
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Figure 2. Left panel. The dependence of Gibbs energy from pressure for Fe in hcp (solid line, thin crosses) and bcc
(dashed line, thick crosses) phases. Middle panel. Left Y scale: The dependence of elastic moduli combinations—criteria
of lattice stability from relative specific volume in the case of Fe. The line with thick crosses corresponds to c¢i1 + 2c12
combination, open circles — c11 — ci12, diamonds — caq4. If the first combination is negative it means bulk instability, the
second—shear instability, the third—tetragonal shear instability. Right Y scale: The dependence of pressure (dash-dot
line) in bee Fe from relative specific volume in the range corresponding to expansion. Right panel. The same values as in
the middle panel for Ta.

lattice becomes unstable. As we can see for both met-
als the results for cold curves and more accurate elastic
moduli calculations are in good agreement because the
growth of pressure with volume is obvious case of un-
physical behaviour at expansion.

The results for 2T EoS for Cu, Fe, and Ta are shown
on Fig 3 as the dependencies of pressure from den-

formation is found with taking into account of uncer-
tainties of G' due to convergence error and finite step of
the grid of pressure values. The found values is 14%

GPa (PBE) and 1312 (PBEpv) and in good agreement

with the results of known experimental data [9]. This
received values are obtained only after addition calcu-
lation on more denser gred (100 points of V/V} in the

compression range from 0.9 to 1 V/Vj).

On the Fig 2b and 2c the values for Fe and Ta of elas-
tic moduli combinations which negative values (even if
one of them) determine the area of lattice instability in
the case of hydrostatic expansion. The minimum value
of pressure is achieved at the specific volume where the
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sity at some values of electron temperature. The influ-
ence of additionally considered p-electron band in PBE
pseudopotential is negligible for most cases (cannot be
shown on this figure) and only for strong compression
of Ta (Fig 3c) the difference caused by this band is
sufficient to take it into account. The positive shift
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Figure 3. The dependence of pressure from density at hydrostatic deformations obtained with the use of PBEpv pseu-
dopotential for fixed values of electron temperature 7.=1000 K (thin crosses), 25000 K(diamonds), 55000 R (open circles).
Left panel. The case of Cu. Middle panel. The case of bcc and hep Fe. For the values of 7. 1000 K and 55 000 K the hcp
curves is always low than bce. For the value of T, the difference between two curves are negligbly small. Right panel. The
case of Ta. The dashed lines corresponds to dependences obtained with the use of PBE pseudopotential.
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Figure 4. Left panel. The dependence from electron temperature of the overestimated d-electron thermal conductivity
divided by s-electron thermal conductivity for Cu. Right panel. The dependence from electron temperature of the s-electron
thermal conductivity for Au and quantum molecular dynamics simulation performed in [6].

of pressure due to the growth of electron temperature
is more noticeable for Cu than for transition metals.
In the case of Fe the described above bce-hep tran-
sition cannot be reliably found at the demonstrated
values for electron temperature 25000K and 55000K.
We can explain such behavior of Fe as the consequence
of decrease of lattice ifluence on metal state when the
electron subsystem energy becomes sufficiently high.

Electronic transport coefficients calculation.
The calculation of the electron conductivity coefficient
was carried out with the use of approach [5, 10] which
is based on the result for Boltzmann kinetic equation
for free electrons in the relaxation time approximation.
On Fig 4a the data for ko obtained with taking into
account of the electronic spectra dependence from elec-
tron temperature and found previously [10] are repre-
sented. Even if we neglect the frequency of d-electron
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—ion collisions so the result for d-electron conductivity

Kor,d is overestimated, the value of % is less than
s

0.02 on the full electron temperature range. The calcu-
lated by DFT partial electron densities of states allow
us to check the statement that the s-clectron impact
in electronic conductivity is dominated. On Fig 4b the
comparison between the results for kor obtained in
our two parabolic approximation [10] and QMD cal-
culations based on Kubo-Greenwood approach [6] is
provided for the case of Au. We can see on Fig 3a
that two areas of electron temperatures exist. On the
first area where T, < 30000K our result has a peak at
5000 K and slightly decrease while the QMD values in-
crease monotonously with 7T,. The second area starts
from T, > 30000K and there the considered results are
in good agreement. Authors supposed that the peak
of kor is the consequence of weak d-band influence on
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Figure 5. Left panel. The dependence from electron temperature of electron-ion coupling for Cu (diamonds), Fe (thick
crosses) and Ta (open crosses). The obtained with taking into account of g(7T.) dependence data for Cu and Fe ars shown
by solid lines. The previous result for Cu without the consideration of electron temperature influence on DOS is shown
by dash-dotted line and the results from web resource [15] are shown by dashed line. Right panel. Resistivities o of Au
(thick crosses) and Ni (open circles) as function of electron temperature T.. The functions cAu(7e) are given at two fixed
values of lattice temperature (300 K—solid line, 1200—dashed line) and ore(T%) at the fixed ion temperatures T.=300 K

(solid), 600 K (dash-solid) and 1200 K (dash)

collision frequencies at temperatures which less than
the absolute value of d-band edge ez 4, = —1.7eV.

Taking into consideration the electron temperature
influence on electron density of states causes the no-
ticeable decrease of electron-ion coupling in the case of
Cu, as we can see on Fig 5a. The represented on Fig
5a values of coupling a was obtained using Kaganov-
Lifshitz-Tanatarov approach [10, 11].

Also the contribution of electron-phonon interaction
in energy and charge transfer was carried out at high
electron temperatures. The determination of this con-
tribution makes possible to obtain the accurate ana-
lytical expression for electron resistivity of metal with
hot electrons [12].

The phonon spectra was approximated by modified
Debye approach where the deviation from linear acous-
tic behavior at large values of phonon momentum is
taking into account. For two-band metals all possi-
ble processes for s- and d-band electrons are consid-
ered and the conditions on the values of electron and
phonon momenta have been taken into account dur-
ing Boltzmann kinetic equation solutions integration.
These solutions were obtained for electrons interacting
with outer electric field in relaxation time approxima-
tion. The electric conductivity is determined with the
use of Ohm law.

As a result the curves of electric conductivity o de-
pendence from 7, was calculated fro Au and Ni. On
the Fig 5b one demonstrated that the value o is al-
most not depend from T, for noble metals(Au). But
the same value for Ni demonstrates steep decreasing
at temperatures is order of magnitude of melting tem-
perature for Ni. It is worth to notice that the demon-
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strated dependence was not taking into account in the
previous known to the authors works.

This work was supported by RFBR (grant No 13-
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