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Abstract. Analytical expressions for the electron thermal conductivity of nickel and aluminum
are presented. The thermal conductivity depends on the electronic and ionic temperatures,
density and phase of the substance (solid or liquid). The expressions obtained can be used
in hydrodynamic calculations of the ablation of these metals or multilayer targets made from
them. We consider the case when ablation is caused by the action of ultrashort laser pulses.

1. Introduction

When simulating ablation processes under the action of ultrashort laser pulses, hydrodynamic
codes describing the motion of ablating matter are powerful instruments of investigations [1–
3]. The hydrodynamic description is used when considering wide-gap dielectrics [4, 5],
semiconductors [6, 7], metals [8–13]. Hydrodynamic modeling in particular is useful to study
the damage of multilayer targets under the laser exposure. The essential component of
the hydrodynamic equations describing the evolution of laser irradiated matter are kinetic
coefficients, among which the electron thermal conductivity is very important, regulating the
heat transfer from the initially heated region deep into the target. We study the ablation
of multilayer target consisting of the alternating layers of nickel and aluminum under the
ultrashort laser irradiation. In this connection it is important to have knowledge of the electron
thermal conductivity of these metals in the two-temperature states with unequal electron and
ion temperatures and varying density and phase state.

2. Electronic thermal conductivity of nickel in solid phase

In a number of works, we have performed the calculation of kinetic coefficients for metals widely
used in physical experiments and technical applications, such as copper [14–17], gold [18–21],
silver [22] and others [23]. Similar to how this was done for these metals, we write analytical
expressions for the coefficient of electronic thermal conductivity of nickel and aluminum in two-
temperature states with different electron and ion temperatures. These expressions should be
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Figure 1. Cold pressure curve of nickel from the works [25, 26] and its approximation by the
formula (7) (full line).

transferred to the more familiar single-temperature ones, since the hydrodynamic code used by
us end-to-end describes the transition from the two-temperature stage with hot electrons in solid
and liquid phases to the one-temperature stage.

Taking into account the thermal conductivity of s-electrons due to electron–ion and electron–
electron collisions, the expression for the inverse coefficient of electron thermal conductivity κs
(thermal resistance Se) in the solid phase has the form

1

κs
=

1

κee
+

1

κs
ei

(1)

in complete analogy with the well-known Matthiessen’s rule for electrical conductivity [24], due
to the addition of the scattering probabilities per unit time for these two processes.

Thermal conductivity due to electron-ion collisions in the solid phase κs
ei
can be written as

[27]

κsei =
1

3
Cvvλs =

1

3
nkBU(t)vFλs. (2)

Here we introduced the dimensionless temperature t = 6kBTe/εF = 6kBTe/(εF0x
2/3); x = ρ/ρ0

is the ratio of current density ρ and density ρ0 = 9.019 g/cm3 at zero temperature and zero
pressure. In the product of the s-electron heat capacity of a unit volume (its calculation in a two-
parabolic model of the electronic spectrum on the example of gold is described in the work [19])
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Figure 2. Thermal resistance of nickel due to the electron–electron scattering at the reduced
density x = 1 as a function of the reduced electron temperature t. Circles are the results of
calculation made as in [16], full line is the calculation by formula (15).

and the average velocity of s-electrons v = vF
√

1 + 3kBTe/(2εF) we highlighted dependent on t
dimensionless factor U(t). The function U(t) was calculated at x = 1 and can be approximated
by the expression

U(t) =
t(1 + c1t

2)

1 + c2tc3
(3)

with c1 = 5.269, c2 = 3.059, c3 = 2.094. In addition, we designated εF and εF0 the Fermi energy
at the current density and density with x = 1 respectively. Fermi velocity vF = pF/m

∗ depends
on the concentration of atoms n at a constant number of conduction electrons per atom through
the Fermi momentum pF ∝ n1/3. Considering the effective mass m∗ independent on density, we
have vF = vF0x

1/3, where vF0 is the Fermi velocity at the reduced density x=1.
The mean free path of s-electrons during scattering by phonons in the solid phase λs = 1/(nΣ).

In this case, the scattering cross section

Σ ∝ u20
Ti

θ
, (4)

where u2
0
∝ ~

2/(MkBθ) is the squared amplitude of the zero-point vibrations of atoms of mass
M , and θ is the Debye temperature [27]. So for λs we obtain

λs ∝

(

n
Ti

θ

~
2

MkBθ

)

−1

∝

MkB
~2Ti

θ2

n
∝

θ2

nTi

. (5)

To find the dependence of the Debye temperature on density, we use the curve of the dependence
of cold pressure on density (concentration of atoms) pc(n) from [25, 26, 28–30]. This curve
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Figure 3. Electron thermal conductivity of nickel of normal density as a function of the electron
temperature at several values of the temperature of ions.

describes well the experimental data. In [25] it is given by the equation of state in the Birch–
Murnaghan form of the dependence of pressure on the reduced density x introduced above:

pc(x) =
3

2
β0(x

7/3
− x5/3)

[

1 +
3

4
(x2/3 − 1)(β1 − 4)

]

(6)

with the parameters β0 = 189.0 GPa, β1 = 4.70. The dependence of cold pressure on the reduced
density can be well approximated as the sum of two terms with power-law dependencies on the
reduced density, one of which corresponds to repulsion, and the other to the attraction of atoms:

pc = pc0 x (x
a
− xb). (7)

From comparison with [25] we find a = 2.0196, b = 0.6806, pc0 = 141.1384 GPa. Comparison of
the two-term approximation of cold pressure (7), as well as calculated by the Birch–Murnaghan
formula from [25] and data from [26] is shown in figure 1.

With adopted two-term formula (7) for cold pressure, the expression for the squared Debye
temperature has the form

θ2(x) =

(

~

kB
cskD

)2

x2/3
(a+ 1)xa − (b+ 1)xb

a− b
. (8)

In this expression, the direction-averaged sound velocity cs and Debye wave number kD are taken
at equilibrium density (x = 1). Function

y(x) =
(a+ 1)xa − (b+ 1)xb

a− b
(9)
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in (8) becomes negative with decreasing density. To avoid this circumstance, we represent the
Debye temperature in the form of an expression close to (8), but without features for small x,
so

θ2(x) = θ2(1)x2/3 ȳ(x), (10)

where

ȳ(x) =
(1 + cab)x

α

1 + cabxβ
, α = 2a+ 1, β = a+ 1, cab =

a− b

b+ 1
. (11)

Functions y(x) (9) and ȳ(x) in (11) together with their derivatives have the same values at x = 1
and the same asymptotics at large x. With the use of function ȳ(x) we have λsi ∝ ȳ(x)/(Tix

1/3).
Therefore, we obtain

κsei(Te, Ti, x) ∝ U(t)xx1/3
ȳ(x)

Tix1/3
∝ U(t)

xȳ(x)

Ti

. (12)

We denote xr = 8.909/9.019 the reduced density of nickel at room temperature Tr = 300 K and
normal pressure. To satisfy the condition that the experimental value of the thermal conductivity
in this case is 90.8 W/(mK), we take the thermal conductivity in W/(mK) at the scattering of
electrons by ions in the solid phase as

κsei(Te, Ti, x) = 96
x

xr

ȳ(x)

ȳ(xr)

Tr

Ti

U(t)

U(tr)
. (13)

Here tr = 6kBTr/(εF0xr
2/3). Difference between 90.8 and 96 W/(mK) values arises when taking

into account electron–electron scattering.
The thermal conductivity at electron–electron scattering (in the case of nickel, it is s–s and

s–d scattering) was calculated similarly to how it was done in relaxation time approximation
in [16, 18]. In electron–electron scattering, scattering of s-electrons by s-electrons can be
distinguished (with a frequency νss) and their scattering by d-electrons (with a frequency of
νsd). This gives for thermal resistance in electron–electron scattering

Se(Te, x) =
1

κee
=

1

κss
+

1

κsd
. (14)

Thermal resistance was calculated for different values of electron temperature Te up to 60 kK,
not exceeding the Fermi temperature at x = 1. So we restrict our consideration by this interval
of the temperatures of electrons. The results of these calculations of thermal resistance due
to the electron–electron scattering are shown in figure 2 as well as their approximation by the
expression

Se(Te, x) =
s1t

x(1 + s2t+ s3t2)
(15)

with s1 = 0.0421, s2 = 17.321, s3 = 11.550, which gives the value of Se in [W/(mK)]−1. As a
result, for the inverse thermal conductivity in the solid phase, we have

1

κs(Te, Ti, x)
= Se(Te, x) +

1

κs
ei
(Te, Ti, x)

. (16)

We suppose the expression for the thermal resistance Se due to electron–electron scattering has
the same form in both the solid and liquid phases.
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Figure 4. Phase diagram of nickel used to calculate its isochoric thermal conductivity.

3. Electron thermal conductivity of nickel in the liquid phase

We calculate the thermal conductivity of the melt of two-temperature nickel. The electron–
electron contribution is still given by formula (14) for thermal resistance. It is required to write
an approximation expression for the contribution of electron–ion scattering. We assume that
in the liquid phase the mean free path of electrons in electron–ion scattering λl can be written
in factorized form as λl = n0

−1/3W (Ti)x
−1/3 and again using the value U(t), we have for the

coefficient of thermal conductivity due to electron–ion scattering

κlei(Te, Ti, x) ∝ U(t)xx1/3W (Ti)x
−1/3

∝ U(t)xW (Ti). (17)

The function W (Ti) is chosen in the form

W (Ti) =
1 + T1/Ti

1 + T2/Ti

(18)

with T1 = 7650 K, T2 = 2580 K, similar to how it was done for liquid aluminum based on
calculations made in the Ziman approximation [31,32]. Then we obtain thermal conductivity in
the liquid phase due to electron–ion scattering in the form

κlei(Te, Ti, x) = 61
x

xlm

U(t)

U(tlm)

W (Ti)

W (Tm)
. (19)

Here we introduced the reduced density of the liquid phase at the melting point under normal
pressure (i.e., at Tm = 1728 K, ρlm = 7.81 g/cm3) xlm = ρlm/ρ0 and tlm = 6kBTm/(εF0xlm

2/3),
and also took into account the value of the thermal coefficient in the liquid phase at the melting
point equal to 55 W/(mK) [33–35] (again difference between 61 and 55 W/(mK) is due to the
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Figure 5. Electron thermal conductivity of nickel in dependence on temperature, equal for
electrons and ions, for different values of density with taking into account phase transition.

electron–electron scattering). The total thermal conductivity in the liquid phase is found taking
into account κee, so for thermal resistance we have

1

κl(Te, Ti, x)
= Se(Te, x) +

1

κl
ei
(Te, Ti, x)

. (20)

Electron thermal conductivity of nickel in dependence on the electron temperature at different
ion temperatures at normal density is sown in figure 3.

To show the influence of the phase transition in the dependence of thermal conductivity on
the temperature we used the phase diagram of nickel, calculated by K V Khishchenko in the
framework of model developed in [36–38] and presented in figure 4. In figure 5 isochoric electron
thermal conductivity of nickel is exhibited as a function of temperature, equal both for ions and
electrons. Here three values of density and different phase states (solid and liquid) are presented.

4. Electron thermal conductivity of aluminum

The parameters of the two-term representation of cold pressure in Al are pc0 = 250.896 GPa,
a = 1.2693, b = 0.9425.

Acting for aluminum, as well as for nickel, taking into account only one s, p-band of electrons,
we obtain thermal resistance due to electron–electron scattering in the form

Se(Te, x) =
s1t

x(1− s2t1/2 + s3t+ s4t2)
(21)

with s1 = 0.000 4771, s2 = 0.5096, s3 = 0.5307, s4 = 0.064 41. Here in t = 6kBTe/(εF0x
2/3) for

aluminum, εF0 = 11.1 eV, and x = ρ/ρ0 with ρ0 = 2.75 g/cm3.
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temperature t.

In figure 6 we presented the thermal resistance due to the electron–electron scattering at the
reduced density x = 1 of aluminum together with its value for nickel from formula (15) and
copper taken from [16].

The function U(t) in the solid phase of aluminum can be written as

U(t) =
t(1 + cs1t

2)

1 + cs2tcs3
(22)

with cs1 = 0.3453, cs2 = 0.3685, cs3 = 2.4089. The thermal conductivity of solid aluminum due
to electron–ion scattering can be represented as

κsei(Te, Ti, x) = kis
x

xr

ȳ(x)

ȳ(xr)

Tr

Ti

U(t)

U(tr)
. (23)

Here tr = 6kBTr/(εF0xr
2/3) with xr = 2.70/2.75.

Then, as for nickel, in the solid phase

1

κs(Te, Ti, x)
= Se(Te, x) +

1

κs
ei
(Te, Ti, x)

. (24)

Coefficient kis in (23) is taken equal to 237.5 W/(mK) to give the thermal conductivity value for
aluminum at normal conditions from (24) with taking into account electron–electron scattering
κs = 237 W/(mK).

In the liquid phase of aluminum, the thermal conductivity due to electron–ion scattering can
be approximated by the expression

κlei(Te, Ti, x) = kil
x

xlm

Ul(t)

Ul(tlm)

W (Ti)

W (Tm)
(25)
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Figure 7. Electron thermal conductivity of liquid aluminum due to the electron–ion scattering
in dependence on the electron temperature Te at different temperatures of ions. Aluminum
density is 2.35 g/cm3. Symbols are results of calculations made in Ziman approach (in [32]), full
lines show thermal conductivity obtained by the use of approximation (25).

with xlm = 2.35/2.75, tlm = 6kBTm/(εF0xlm
2/3) and a melting temperature Tm = 933.6 K. The

functions included here are

Ul(t) =
t(1 + cl1t+ cl2t

2)

1 + cl3tcl4
, (26)

W (Ti) =
1 + T1/Ti

1 + T2/Ti

(27)

with cl1 = 1.5443, cl2 = 1.3767, cl3 = 2.9959, cl4 = 2.1633 and T1 = 4130 K, T2 = 1390 K.
And taking into account the electron–electron scattering for the inverse coefficient of electronic
thermal conductivity of aluminum in the liquid phase, we have

1

κl(Te, Ti, x)
= Se(Te, x) +

1

κl
ei
(Te, Ti, x)

. (28)

We take coefficient kil in (25) to be kil = 98.3 W/(mK) in order to obtain the value of the
thermal conductivity at the melting point Tm at normal pressure from (28) κl = 98 W/(mK).

The thermal conductivity due to electron–ion scattering, calculated in the Ziman approach
and by formula (25), is shown in figure 7 depending on electron temperature for four values of ion
temperature Ti = 1000, 3000, 10 000, 30 000 K and density 2.35 g/cm3. Up to the temperature
of ions Ti = 30 kK, the use of the expression (25) for the calculation of the thermal conductivity
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due to the electron–ion scattering gives results that are in good agreement with those obtained
by applying the Ziman approximation. The ion temperature range for the applicability of
expression (25) up to 30 kK covers the range of ion temperatures that we consider when studying
the ablation of multilayer aluminum and nickel targets.

Thermal conductivity of aluminum is presented in figure 8 as a function of the temperature
of electrons for several ion temperatures at normal density.

5. Conclusion

We have presented analytical expressions approximating thermal conductivity of nickel and
aluminum, those metals, which are used particularly in experiments on the ablation of multilayer
targets. Expressions obtained give thermal conductivity of these materials in dependence of
electron and ion temperatures and density and take into account their phase state (solid or
liquid). These expressions for electron thermal conductivity can be applied in the hydrodynamic
codes used when studying ablation processes in these metals.
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