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Tuned Mullins-Sekerka instability: Exact results
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Mullins-Sekerka’s instability at 3D self-similar growth of a spherical seed crystal in an undercooled fluid
is discussed. The exact solution of the linearized stability problem is obtained. It is quite different from the
conventional results of the quasisteady approximation. The instability occurs much weaker, so that instead of
exponential growth in time, unstable modes exhibit just power-law-growth. The relative growth rates of different
modes vary in time and depend on their initial amplitudes. It allows control over the growth of each mode
individually and tailoring the instability, to obtain a desired shape of the growing crystal at a given time.
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I. INTRODUCTION

Exact solutions play a unique role in physics. The point is
that often important new features of a problem are observed in a
range of parameters, lying beyond the applicability conditions
of various approximate approaches, so that the exact solution
is the only way to detect and study these features. In this
paper, we present a new class of exact solutions of a linear
stability problem describing the Mullins-Sekerka instability of
self-similar spherically symmetric growth of a spherical seed.

Discovered more than 50 years ago [1,2] the Mullins-
Sekerka instability is still studied extensively (see, e.g.,
Ref. [3]). The manifestation of the instability has been
observed far beyond the initial narrow framework of crystal
growth. It may control tumor formation [4], supramolecular
networks [5], formation of electron-hole drops in semicon-
ductors [6,7], ripples in graphene [8], etc.

In the present paper, we show that the self-similarity
together with extension of the problem beyond the commonly
utilized quasisteady approximation [9] changes the instability
qualitatively, so that exponential growth of unstable modes
is replaced by the one controlled by power-laws. While
a characteristic time of the exponential instability (inverse
increment) is determined by the intrinsic properties of the
corresponding stability problem, the power-law-controlled
instability does not possess any intrinsic characteristic time
at all. For each unstable mode a characteristic time to grow is
determined by the initial amplitude of this mode. Moreover, the
relative rates of growth of different modes vary in time and also
depend on their initial amplitudes. It provides a new, unique
opportunity controlling the instability and even tailoring it to
obtain a crystal with a desired shape, which may be important
for numerous applications.

II. PROBLEM FORMULATION

The conventional Mullins-Sekerka instability [1,2] arises
either at diffusion-controlled growth of a solid phase into a
supersaturated solution, or at solidification of an undercooled
melt. The theory of the phenomenon is practically identical in
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both the cases. For definiteness in what follows we consider
the solidification of a melt.

The physical grounds for the instability have been pointed
out in the pioneer paper of Mullins and Sekerka [1]. Solid-
ification results in a latent heat release. The released heat is
transferred from the solid-liquid interface to the undercooled
melt by heat diffusion. The larger the temperature gradient in
the vicinity of the interface the better the heat transfer and
hence the larger the solidification rate. If a bulge arises at the
interface, it results in a sharpening of the temperature gradient
in the vicinity of the bulge. Therefore, the interface velocity
at the tip of the bulge becomes larger than that at the rest
of the interface. It creates positive feedback, resulting in the
instability; see Fig. 1.

III. MODEL

To simplify the problem we neglect the difference in densi-
ties of the solid and liquid phases. In this case the solidification
does not induce any mass transfer, being controlled by the heat
transfer entirely. We also neglect anisotropy of the solid phase,
so that a spherically symmetric solution to the problem is ad-
mitted. Finally, we suppose that the solidification temperature
Ts is a material constant Ts0 (the Stefan boundary condition).

Note, actually, Ts is not a constant. It depends on the
interface curvature through the capillary effect [1]. Owing
to this dependence, short-wavelength perturbations to the
interface are stabilized. As a result, a certain characteristic
scale for the most rapidly growing perturbations comes into
being. It plays the key role in the pattern selection processes,
describing, e.g., the dendritic structure of crystals [9]. The
neglect of the capillary effect removes the characteristic scale
for the most “dangerous” perturbations. Then, it seems the
assumption Ts = const makes the problem ill-posed.

In this connection, it is relevant to mention a series of
mathematically elegant publications devoted to exact nonlinear
solutions of the so-called 2D Laplacian growth, closely related
to the problem in question; see, e.g., Ref. [10] and references
therein. In the absence of the capillary effect most of these
solutions show finite-time singularities via the formation of
cusps [11–13]. The cusps make the exact solutions physically
meaningless.
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FIG. 1. (Color online) A temperature profile in an undercooled
melt in the vicinity of a growing crystal (schematically). The solid
phase is indicated by filling with a wavy pattern. The solid-liquid
interface is shown with a thick line. Thin lines designate the se-
quential isotherms with fixed temperature step �T . The unperturbed
spherically symmetric crystal (a) and fourfold deformed one (b).
The deformation gives rise to an increase in the modulus of the
temperature gradient at convex parts of the interface and in decrease
of it at concave ones (note the corresponding changes of the distances
between the sequential isotherms). Moreover, perturbed heat flow (1)
in addition to radial (2) gets an azimuthal component (3) directed
from the convex to concave parts of the interface; see arrows in (b).
Both effects enhance the heat transfer from the bulges and suppresses
the one from the concave parts.

Fortunately in our case the situation is not so dramatic. If a
system exhibits an instability, growth of the amplitudes of the
unstable modes sooner, or later drives it beyond the applica-
bility conditions of the corresponding linear stability problem.
Thus, any linear stability problem always has a finite lifetime.
For the problem in question the neglect of the capillary effect
imposes certain constraints on applicability of the results of
the subsequent analysis. Since in the present paper we are
restricted by the framework of the linear stability analysis
solely, to justify the fixed-temperature boundary condition the
constraints should hold until the linear stability problem itself
becomes invalid. The corresponding quantitative conditions
will be discussed later on.

IV. UNPERTURBED SOLUTION

To begin with, we consider spherically symmetric growth
of a seed crystal. It is convenient to introduce dimensionless
temperature θ = (T − T∞)C/L. Here C stand for the specific
heat of the melt; L is the solidification latent heat and T∞
designates the initial temperature of the undercooled melt
(T∞ < Ts0). Under the assumptions made the solidification
process is described by the following boundary-value problem
with a moving boundary [14]:

∂θ

∂t
= χ

1

r2

∂

∂r

(
r2 ∂θ

∂r

)
, (1)

θ |R = θs = const > 0, (2)

χ
∂θ

∂r

∣∣∣∣
R

= −dR

dt
, (3)

θ → 0 at r → ∞, (4)

θ (0, r) = 0. (5)

Here χ stands for the heat diffusivity of the melt, θs =
(Ts0 − T∞)C/L, and R(t) is the radius of the growing crystal.
Note, function R(t) is not known a priori. It should be defined
as a result of the problem solution. Thus, in contrast to the
conventional heat transfer problems, where a temperature
profile is a single unknown function, now we have two
unknown functions: θ (r,t) and R(t). Because of that the
problem in question requires an extra boundary condition. The
condition does not follow from the energy conservation law,
but should be derived from the solidification kinetics. In our
case this condition is Eq. (2), stipulated for the temperature at
the interface to be equal to Ts0. Let us stress that Eq. (2) means
that the temperature inside the solid phase is Ts0 = const; i.e.,
there is no heat transfer at r < R.

The only dimensional constant in Eqs. (1)–(5) is χ .
It does not allow to build up dimensionless spatial and
temporal variables separately. The only way to introduce a
dimensionless variable in this case is to consider ratio r/

√
χt .

Therefore, according to the general principles of dimensional
analysis, instead of being a function of two independent
variables, r and t , the solution to the problem should be a
function of just a single variable proportional to this ratio, e.g.,

ξ = r

2
√

χt
. (6)

The corresponding ordinary differential equation is integrated
easily. Its solution, satisfying the specified initial and boundary
conditions, is as follows:

θ = θ0(ξ ) ≡ 2α3 exp(α2)
∫ ∞

ξ

exp (−η2)

η2
dη, (7)

R = R0(t) ≡ 2α
√

χt, (8)

where α is a root of transcendental equation:

2α3 exp(α2)
∫ ∞

α

exp (−η2)

η2
dη = θs. (9)

Though a formal solution of Eq. (9) exists at any θs < 1,
physically meaningful are only small (relative to L/C)
undercooling, when θs � 1. In this case, Eq. (9) admits a
simple approximate solution:

α �
√

θs/2. (10)

V. STABILITY PROBLEM: QUALITATIVE ANALYSIS

Owing to the Mullins-Sekerka instability the obtained
spherically symmetrical solution should be unstable against
perturbations breaking the symmetry. To get some hints as
to how to attack the corresponding stability problem, let
us remember certain general issues of the stability analysis.
Usually, an arbitrary small perturbation is expanded in terms
of the eigenfunctions of the unperturbed problem. Then, the
evolution of every separate mode in the linearized stability
problem may be studied independently. For a steady unper-
turbed solution the temporal dependence of a given nth mode
is supposed to have the form exp(γnt), where the specific
dispersion law (the dependence γn on n) is defined by the
solvability conditions. For more details, see, e.g.,Refs. [15,16].
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If the unperturbed solution is time-dependent, but its
characteristic temporal scale is small relative to the one for
the instability to arise, a quasisteady approximation may be
employed. In this case γn becomes time-dependent too and
exp(γnt) transforms into exp[

∫
γn(t)dt].

Let us see how it affects instability of blowing up solutions
arising in self-similar problems, which do not allow us to
build from their constants a quantity with dimension of time.
In these cases the only possibility to make the dimension of
γn equal to [s−1] is to suppose that γn = μn/t , where μn

is a dimensionless constant. Then,
∫

γn(t)dt = ∫
(μn/t)dt =

μn log t , and instead of the exponential growth we obtain a
much slower one, controlled by the power law: tμn , that is the
instability is partly stabilized.

The physical grounds for the stabilization are related to
the fact that usually the instability rate is controlled by the
characteristic values of the gradients of the corresponding
variables (see the arguments, explaining the Mullins-Sekerka
instability presented above). For blowing up solutions the
characteristic values of the gradients decrease with the course
of time and hence the instability rate should decrease too.
Thus, the hint is that the instability should be controlled by a
power law [17].

VI. STABILITY PROBLEM: RIGOROUS ANALYSIS

To proceed with the rigorous analysis, we have to generalize
the boundary-value problem Eqs. (1)–(5) to the case of a non-
spherically symmetric temperature field. The generalization
reads [18]

∂θ

∂t
= χ�θ, (11)

θ |R(ϑ,ϕ,t) = θs = const > 0, (12)

χ (n · ∇θ )|R(ϑ,ϕ,t) = −
(

n · ∂R
∂t

)
(13)

θ → 0 at r → ∞, (14)

θ (0, r) = 0, (15)

where R(ϑ,ϕ,t) is an unknown function, describing the
position of the interface according to equation r = R(ϑ,ϕ,t)
and n is the normal vector.

To analyze the linear stability of solution Eqs. (7) and (8)
we perturb it with arbitrary smooth small perturbations: θ =
θ0 + εθ1, R = R0 + εR1, where ε is a small constant. Then,
it is convenient to project the boundary conditions, imposed
at the perturbed interface, to the unperturbed boundary r =
R0(t), expanding them in powers of small εR1 and taking into
account terms of the zeroth and first orders in ε only [18,19].
In this case, Eq. (12) transforms as follows:

θ |R0+εR1
� θ0|R0

+ ∂θ0

∂r

∣∣∣∣
R0

εR1 + εθ1|R0
= θs.

Next, bearing in mind that θ0|R0
= θs , see Eq. (2), and that

∂θ0/∂r|R0
= −dR0/χdt = −α/

√
χt , according to Eqs. (3)

and (8), we eventually obtain

θ1|R0 = αR1√
χt

. (16)

Treating Eq. (13) in an analogous manner, it should be
taken into account that nr = O(1) and nϑ ∼ nϕ = O(ε). The
treatment yields

χR1
∂2θ0

∂r2

∣∣∣∣
R0

+ χ
∂θ1

∂r

∣∣∣∣
R0

+ ∂R1

∂t
= 0. (17)

Note, that ∂2θ0/∂r2, entering into this condition, may be
expressed in terms of dθ0/dξ , according to Eq. (1), and that
(dθ0/dξ )R0

= −2α; see Eqs. (3), (6), and (8).
In the subsequent analysis it is convenient to transfer from

r to ξ . Then, in accord with what has been said above, the
eigenfunctions of the linearized stability problem should have
the form [20]

θ1 = tμf
(ξ )Ym

 (ϑ,ϕ), (18)

R1 = AtζYm

 (ϑ,ϕ), (19)

where A is a constant and Ym

 (ϑ,ϕ) stand for the Laplace

spherical harmonics.
Next, Eqs. (16) and (17) yield

ζ = μ + 1
2 , (20)

Thus, the stability problem is reduced to a boundary-value
problem for f
(ξ ). It is convenient to join two boundary
conditions Eqs. (16) and (17), dividing one by the other.
Finally, the problem reads as follows:

d2f


dξ 2
+

(
ξ + 1

ξ

)
df


dξ
−

[
4μ + 
(
 + 1)

ξ 2

]
f
 = 0, (21)

d

dξ
(log f
)

∣∣∣∣
α

= −2(μ + α2) + 3

α
, (22)

f
 → 0 at ξ → ∞. (23)

It is worth mentioning that Eqs. (21)–(23) do not depend on
m, that is each eigenvalue μ
 has (2
 + 1)-fold degeneracy.

Equation (21) is exactly integrable. The integral, satisfying
boundary condition Eq. (23), is

f (ξ ) = ξ−3/2 exp

(
−ξ 2

2

)
Wλ,ν(ξ 2), (24)

where Wλ,ν (z) stands for the Whittaker function [21] and

ν = 2
 + 1

4
, λ = −

(
μ + 3

4

)
. (25)

Among various presentations of Wλ,ν (z) we select the
following [21]:

Wλ,ν(z) = Bzλe−z/2
∫ ∞

0
xν−λ− 1

2 e−x

(
1 + x

z

)ν+λ− 1
2

dx. (26)

Here B is a constant.
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The only remaining condition to be satisfied is Eq. (22).
Substitution of Eqs. (24)–(26) into Eq. (22) yields

(
λ + ν − 1

2

) ∫ ∞
0

x
ν−λ+ 1

2

α3

(
1 + x

α2

)λ+ν− 3
2 e−xdx∫ ∞

0 xν−λ− 1
2
(
1 + x

α2

)λ+ν− 1
2 e−xdx

= 0. (27)

Note, that the integrands in Eq. (27) both are nonnegative
and the integrals converge at μ > −(
 + 3)/2, that is for all
unstable modes, if any. Thus, the integrals in the left-hand-side
of Eq. (27) are certain finite-positive quantities. In this case,
Eq. (27) holds if and only if the prefactor in the numerator
of its left-hand-side vanishes: λ + ν − 1

2 = 0. It yields the
dispersion relation

μ
 = 


2
− 1; ζ
 = 
 − 1

2
; (28)

see Eqs. (20) and (25). It is important to stress that exponents
μ
 and ζ
 depend on 
 solely and do not depend on the
undercooling rate θs .

VII. DISCUSSION OF THE RESULTS

The temporal evolution of the perturbations to the interface
is controlled by exponent ζ
; see Eqs. (19) and (28). The pertur-
bations with 
 = 0, which do not break the spherical symmetry
of Eqs. (7) and (8), decay. It is an obvious consequence of the
uniqueness of the solution of Eqs. (1)–(5) given by Eqs. (7) and
(8). Perturbations with 
 = 1 are time-independent. It follows
from the translational symmetry of the problem, because in the
linear approximation these perturbations correspond just to a
shift of the center of the coordinate frame for solution Eqs. (7)
and (8). Perturbations with 
 = 2 grow as

√
t , that is with

the same rate as R0(t) does. It occurs because in the linear
approximation such perturbations transform the spherically
symmetric solution Eqs. (7) and (8) into ellipsoidal. On the
other hand, the problem in question admits an exact solution
with the ellipsoidal symmetry analogous to Eqs. (7) and (8)
[22]. These rigorous results confirm the ones of Ref. [1]
obtained in a quasisteady approximation.

According to Eq. (28) at t → ∞ all other modes grow
faster than the unperturbed solution and therefore should be
regarded as unstable. The exponent ζ
, i.e., the instability rate,
increases linearly with an increase in 
. Meanwhile, actually,
as it already has been pointed out, perturbations with large
enough 
 are stabilized owing to the capillary effect [1]. The
obtained unlimited increase of ζ
 at large 
 is an apparent
defect of our model related to the employment of the plain
Stefan boundary condition [Eqs. (2) and (12)] with the fixed
solidification temperature Ts0.

Thus, the model in question should have a limited range of
validity. To find the corresponding applicability conditions, let
us modify Eqs. (2) and (12), taking into account the mentioned
dependence of the solidification temperature on the interface
curvature K. Expanding this dependence in powers of small K
and dropping higher order terms, we obtain Ts � Ts0(1 − �K),
where � is the capillary constant.

Utilization of this modified expression for the solidification
temperature contributes to the problem a constant with dimen-
sion of length and hence breaks the self-similarity. Therefore,
the modification of the boundary condition affects both the

unperturbed spherically symmetric problem and the problem
of its stability. For the former it is seen straightforwardly
that the capillary correction to Ts0 is negligible provided
R0 
 Rc, where Rc = 2�Ts0/(Ts0 − T∞) is the radius of a
critical nucleus at the given undercooling. For the later the
question is a bit more tricky.

Taking into account that for a slightly perturbed sphere the
mean curvature may be presented as [1]

K � 2

R0

(
1 − ε

R1

R0

)
− ε

�θ,ϕR1

R2
0

,

where �θ,ϕ stands for the angular part of the Laplacian
expressed in spherical coordinates, and that �θ,ϕYm


 =
−
(
 + 1)Ym


 , the modified boundary condition Eq. (16) reads

θ1|R0 =
[

α√
χt

− �θs

(
 + 2)(
 − 1)

R2
0

]
R1. (29)

Our model is physically adequate provided the second term
in square brackets in Eq. (29) is small relative to the first,
which allows reducing Eq. (29) to Eq. (16). Bearing in mind
Eqs. (8) and (10), this condition may be written as follows:

(
 + 2)(
 − 1) � 
2 � R0(t)

�
; (30)

see Eq. (8). Since 
 is not bounded from above this condition
inevitably is violated at 
 = O(R0/�). The evolution of
such perturbations is not described by the developed theory.
These perturbations are stabilized [partly at 
 = O(R0/�),
or completely at 
 
 R0/�] owing to the capillary effect
[1]. However, due to inequalities � � Rc � R0(t) for the
problem in question the stabilization occurs at very large
values of 
, which often may correspond to the scales lying
below the one required for applicability of the developed
macroscopic approach itself, especially at manifestations of
the Mullins-Sekerka instability in unconventional problems,
such as those discussed in Refs. [4–8]. Note also, while the
condition R0(t) 
 Rc depends on the rate of undercooling
Ts0 − T∞, Eq. (30) does not.

(b)(a)

FIG. 2. (Color online) Example, illustrating the opportunity of
shape-control. Temporal evolution of the cross-section of a growing
crystal by an equatorial plane passing through z axis. The spher-
ical seed is perturbed by two eigenmodes with the same ampli-

tudes; 
 equals 3 and 12, respectively: R

2
√

χt
= 0.1 + 0.01

√
t

τ
Y 0

3 +
0.01( t

τ
)5Y 0

12. The solid phase is indicated with a wavy pattern. (a) At
t = 0.5τ the shape is determined by the smoother perturbation with

 = 3. (b) At t = τ it is strongly affected by the perturbation with

 = 12.
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Applying the results obtained to describe the evolution of an
actual small but finite perturbation, we have to specify its initial
amplitude. The amplitude provides the characteristic spatial �

and temporal τ = �2/χ scales. The specific choice of these
scales depends on the type of the initial perturbation (induced,
spontaneous, etc.). Discussion of this issue lies beyond the
scope of the present paper. However, just the fact that τ exists,
together with the obtained power-law growth of the unstable
modes results in the conclusion that at t � τ perturbations
with small 
 play the dominant role, while at t 
 τ the
case is opposite; see Fig. 2. It should be stressed that �

and τ may depend on 
, being different for different modes.
It provides additional opportunities to control and tailor the
instability.

VIII. CONCLUSION

The exact solution for the linearized stability problem of
self-similar crystal growth has been obtained. The solution
exhibits qualitative differences with respect to the conven-
tional approximate results. Specifically, instead of exponential
growth of unstable modes it yields a much slower one, con-
trolled by power laws. The exponents of these laws have been
obtained in the explicit form; see Eq. (28). The characteristic
time for each unstable mode is defined by its initial amplitude:
τ
 = �2


/χ . The applicability conditions for the developed
analysis read R0(t) 
 Rc; 
2 � R0(t)/�. These results shed
new light on the old important phenomenon and provide a new
opportunity to control the shape of the growing seed by tuning
initial amplitudes of different unstable modes.
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