Russian Academy of Sciences Joint Institute for High Temperatures RAS Institute of Problems of Chemical Physics RAS

Kabardino-Balkarian State University

XXX International Conference on

Interaction of Intense Energy Fluxes with Matter

March 1-6, 2015, Elbrus, Russia

Book of Abstracts

Moscow & Chernogolovka & Nalchik
2015

The book consists of the abstracts of plenary, oral and poster contributions to the XXX International Conference on Interaction of Intense Energy Fluxes with Matter (March 1–6, 2015, Elbrus, Kabardino-Balkaria, Russia). The reports deal with the contemporary investigations in the field of physics of extreme states of matter. The following topics are covered: interaction of intense laser, x-ray and microwave radiation, powerful ion and electron beams with matter; techniques of intense energy fluxes generation; experimental methods of diagnostics of ultrafast processes; shock waves, detonation and combustion physics; equations of state and constitutive equations for matter at high pressures and temperatures; low-temperature plasma physics; physical issues of power engineering and technology projects.

The conference is held under financial support of the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant No. 15-02-20044).

Edited by academician Fortov V.E., Karamurzov B.S., Efremov V.P., Khishchenko K.V., Sultanov V.G., Levashov P.R., Andreev N.E., Kanel G.I., Iosilevskiy I.L., Mintsev V.B., Petrov O.F., Savintsev A.P., Shakhray D.V., Shpatakovskaya G.V.

CONTENTS

CHAPTER 1. POWER INTERACTION WITH MATTER

<u>Fortov V.E.</u> On correlation and quantum effects in strongly cou-
pled plasmas
Mintsev V.B. Intense particle beams and high energy densities
physics
Krasyuk I.K., Semenov A.Yu., Stuchebryukhov I.A., Belikov R.S.,
Khishchenko K.V., Rosmej O.N., Rienecker T., Schoenlein
A., Tomut M. Investigation of the spall strength of graphite
in stresses produced by nano- and picosecond laser actions .
Ashitkov S.I., Komarov P.S., Agranat M.B., Kanel G.I. The be-
havior of metals under ultrafast loads driven by femtosecond
laser
Struleva E.V., Ashitkov S.I., Komarov P.S., Ovchinnikov A.V.,
Agranat M.B. Ablation of tantalum irradiated by femtosecond
laser pulses
Chefonov O.V., Ovchinnikov A.V., Ashitkov S.I., Agranat M.B.,
Vicario C., Hauri C.P. Development of high power terahertz
facility
Inogamov N.A., Zhakhovsky V.V., Khokhlov V.A., Faenov A.Ya.,
Shepelev V.V., Ilnitsky D.K., Hasegawa N., Nishikino M.,
Yamagiwa M., Ishino M., Pikuz T.A., Takayoshi S., Tomita
T., Kawachi T. Modeling of pump-probe experiments with
Ti:sapp pump and x-ray probe
Khokhlov V.A., Inogamov N.A., Zhakhovsky V.V., Shepelev V.V.,
Ilnitsky D.K. Thin 10–100 nm film in contact with substrate:
dynamics after femtosecond irradiation
Povarnitsyn M.E., Fokin V.B., Levashov P.R., Khishchenko K.V.
Implementation of nucleation model into hydrocode for sim-
ulation of laser ablation
<u>Fokin V.B.</u> , Povarnitsyn M.E., Levashov P.R. Continual atomistic
simulation of metal targets irradiated by femtosecond double-
pulses
Inogamov N.A., Zhakhovsky V.V., Khokhlov V.A., Shepelev V.V.,
Niffenegger K. Mechanisms of laser peeling of thin films from
substrate and formation of nanobump
Starikov S.V., Pisarev V.V. Atomistic simulation of surface mod-
ification by laser pulse: comparison of models with various
scales

Veysman M.E., Reinholz H., Röpke G., Wierling A., Winkel M.	
Permittivity of hot plasmas in wide frequency range	31
Margushev Z.Ch., Bzheumikhov K.A., Savoiskii Yu.V., Khokonov	
A.Kh., Dzhanibekov K.Kh. The transparency of polycapillary	
system for femtosecond laser pulses	32
<u>Kostenko O.F.</u> On the possibility of hard K_{α} yield enhancement	
using micro-structured foils	32
Andreev N.E., Pugachev L.P., Levashov P.R. Quasimonochroma-	
tic beams of accelerated electrons in the interaction of a weak-	00
contrast intense femtosecond laser pulse with a metal foil	33
Pugachev L.P., Levashov P.R., Andreev N.E. 3D PIC modeling	
of ion acceleration from a thin plasma layer with overcritical	
density under the action of short intense laser pulse. Conver-	
gence of results depending on the computational parameters	34
Pugacheva D.V., Andreev N.E. The dynamics of the electron spin	~~
precession in the laser wakefield acceleration	35
<u>Kuznetsov S.V.</u> Trapping of electrons from the electron bunch in	
a wake wave	36
Shulyapov S.A., Ivanov K.A., Tsymbalov I.N., Krestovskih D.A.,	
Savel'ev A.B., Ksenofontov P.A., Brantov A.V., Bychenkov	
V.Yu. Parametric waves excitation in relativistic laser—	
plasma interactions for electron acceleration	37
<u>Pobol I.L.</u> , Yurevich S.V., Azaryan N.S., Budagov Ju.A., Glagolev	
V.V., Demin D.L., Trubnikov G.V., Shirkov G.D. Developing	
of superconducting niobium resonators for accelerating devices	38
<u>Pikuz S.A.</u> , Neumayer P., Rosmej O.N., Antonelli L., Bagnoud	
V., Boutoux G., Faenov A.Ya., Giuffrida L., Hansen S.B.,	
Khaghani D., Li K., Santos J.J., Sauterey A., Schoenlein A.,	
Skobelev I.Yu., Zielbauer B., Batani D. Warm solid matter	
isochorically heated by laser-generated relativistic electrons .	39
Demidov B.A., <u>Efremov V.P.</u> , Kalinin Yu.G., Kazakov E.D.,	
Metelkin S. Yu., Potapenko A.I., Petrov V.A. New method of	
the polymeric material properties experimental inestigation	
under powerfull enegry flux impact	40
Mayer P.N., Mayer A.E. 2D simulations of the dynamics and frac-	
ture of metal in the energy release area of the high-current	
electron beam	41
<u>Bobrov V.B.</u> , Trigger S.A. Aharonov–Bohm effect and quantum	
electrodynamics background	42

scribe this complex dynamics we use an advanced specially developed hybrid method based on combination of atomistic and continual approaches. The atomistic system describes the evolution of a target irradiated by the laser pulses, takes into account melting, evaporation, nucleation and recoil effects while electronic subsystem is responsible for correct description of the laser energy absorption, thermal conductivity process and electron—phonon coupling. The results of simulation of the double-pulse ablation obtained for different delays from 1 to 100 ps correlate with the experimental findings.

MECHANISMS OF LASER PEELING OF THIN FILMS FROM SUBSTRATE AND FORMATION OF NANOBUMP

 $Inogamov\ N.A., ^1\ Zhakhovsky\ V.V., ^2\ Khokhlov\ V.A., ^1\ Shepelev\ V.V., ^{*3}\ Niffenegger\ K.^4$

¹ITP RAS, Chernogolovka, Russia, ²VNIIA, Moscow, Russia, ³ICAD RAS, Moscow, Russia, ⁴USF, Tampa, United States

*vadim.aries@gmail.com

The report is devoted to the studies of laser peeling of thin 10-100 nm films. To describe better the particularity of our subject, it is valuable to present shortly general picture of laser structuring. It is known, that the structuring of materials by short laser pulses with duration in the range of 10 fs - 1 ps has many important technological applications. But underlying physics is not well understood. On our view, the corresponding processes are some mixture and interplay of plasmon enhanced absorption from one side and a thermomechanical triplet from another side, where the triplet is: (i) spallation, (ii) capillary deceleration in tandem with (iii) diffusion limited freezing. Particular morphology of structures depends on absorbed fluence F_{abs} and number of pulses. Formation of the structures is usually attributed to plasmon activity, which leads to the LIPSS (laser induced periodic surface structures, ripples) [1]. On our opinion, plasmons only dominate in the interplay if absorbed fluences are small and multiple repetion is used. Indeed, the chaotic (not ripples) structures are produced by X-ray pulse where plasmon excitation is not possible [2]. Therefore the wavelength should be added into the list of parameters governing morphology of irradiated surface. It was shown [2] that for the small number of pulses, either large F_{abs} or short wavelength λ the chaotic structures different from ripples are formed. Another important governing parameters are connected with geometrical limitations. They are a radius of a focal spot R_L on a irradiated surface and film thickness which fixes spallation depth

if the film is mechanically weakly linked to a substrate. Indeed, surface structures have the finite lateral sizes of $\sim 0.1-1$ um. Therefore for tightly focused optical light pulses $R_L \sim \lambda \sim$ um, the structures have to change qualitatively, see [3] and Refs. therein. In the report the physics of the peeling is considered and the new (relative to [3]) results are presented.

ATOMISTIC SIMULATION OF SURFACE MODIFICATION BY LASER PULSE: COMPARISON OF MODELS WITH VARIOUS SCALES

Starikov S.V.,* Pisarev V.V.

JIHT RAS, Moscow, Russia

*starikov@ihed ras ru

In this work the femtosecond laser pulse modification of surface is studied for aluminium (Al) and gold (Au) by use of two-temperature atomistic simulation. The results are obtained for various atomistic models with different scales: from pseudo-one-dimensional to full-scale three-dimensional atomistic simulation. The surface modification after laser irradiation can be caused by ablation and melting. At low energy of laser pulse, the nanoscale ripples on surface may be induced by the melting without laser ablation. The nanoscale changes of the surface are due to the splash of molten metal under temperature gradient. The laser ablation occurs at a higher pulse energy when a crater is formed on the surface. There are essential differences between Al ablation and Au ablation. The swelling and voids formation as the first step at the shock-wave-induced ablation is obtained for both metals. However, the simulation of ablation in gold shows the existence of additional nonthermal type of ablation which is associated with electron pressure relaxation. This type of ablation takes place at surface layer, at a depth of several nanometers and does not induce swelling.

Sipe et al., Phys. Rev. B 27, 1141 (1983); Akhmanov et al., Sov. Phys. Uspekhi 28, 1084 (1985).

Inogamov et al., J. Phys.: Conf. Ser. 510, 012041(2014); ibid v. 500, 112070(2014).

^{3.} Inogamov et al., JETP Lett. 100, 4 (2014); JETP 120, 15 (2015).