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Interaction of ultrashort laser pulses with materials can bring the
latter to highly non-equilibrium states, where the electronic
temperature strongly differs from the ionic one. The properties of
such excited material can be considerably different from those in a
hot, but equilibrium state. The reliable modeling of laser-irradiated
target requires careful analysis of its properties in both regimes.
This paper reports a procedure which provides the equations of
state of ruthenium using density functional theory calculations.
The obtained data are fitted with analytical functions. The con-
structed equations of state are applicable in the one- and two-
temperature regimes and in a wide range of densities, tempera-
tures and pressures. The electron thermal conductivity and
electron-phonon coupling factor are also calculated. The obtained
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re.
induced by various sources, such as photons, electrons and ions.
f warm dense matter formation induced by high intensity ultrashort laser
1. Data

1.1. Ab-initio calculations of ruthenium properties

1.1.1. Role of deformation of an hcp cell and variation of density
A change of the c=a ratio (height to base length of a cell) in an hcp lattice is investigated in the two-

temperature (2T) regime. For each considered value of Te we performed two DFTcalculations: onewith
a fixed c=a ratio and another one with a relaxed c=a ratio corresponding to an energy minimum of the
lattice. Ions are at the absolute zero temperature in both calculations. We found that the energy

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. DOS of Ru in the range of energies corresponding to the conduction and semicore electron bands. The black curve represents
the result of a PAW calculation, while the DOS obtained in the LAPW approach is shown with the red curve. The raw data are
provided in Supplementary Materials.
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difference per atom between these calculations for each value of Te is smaller than 0.1 eV. Constructing
an equation of states for heated electrons we can neglect the effect of density variation on the electron
pressure pe and energy Ee.

Our decision not to conduct a series of quantum-mechanical calculations varying both the electron
temperature Te and the density can be justified with the following reason. The duration of the 2T stage
is short (see Fig. 5 in the main text) due to a large value of the coefficient of electron-ion energy ex-
change (coupling parameter) in Ru. This duration is shorter than the acoustic timescale ts ¼ dT= cs,
which is defined as the time necessary for a top of a rarefaction wave with speed cs to pass a thickness
dT of a heated layer. During the 2T stage, there is no time for a significant decrease in density in the laser
heated layer.

Nevertheless, the analytical formulas for Pe and Ee that we construct below take into account the
density dependence, down to small values, in a phenomenologicalway based on a Fermi-gas approach.
Of course, for small densities these expressions give us an order of magnitude prediction. But for
moderate deviations from the normal density they are accurate. This is our way to avoid time and
resources consuming DFT simulations for many different densities.

1.1.2. Energy expenses to ionize core electrons at high electron temperatures
The calculated DOS of Ru is shown in Fig. 1. There is a good agreement for the positions on the

energy axis of the 4s and 4p semicore bands obtained by the PAWand LAPWapproaches. Bothmethods
predict these two bands to be located at 72 and 43 eV below the Fermi level, respectively. The values
are close to the NIST data obtained using X-ray photoelectron spectroscopy: 75 eV for the 4s band and
43 eV for the 4p band (https://srdata.nist.gov/xps NIST X-ray Photoelectron Spectroscopy Database).

The electron heat capacity Ce ¼ vEe=vTejV , shown in Fig. 2, is calculated from DFT simulations of the
electron energy EeðTe;rÞ, obtained in Section 3.1. Below a temperature of Tez2000 K the heat capacity
CeðTeÞ rises linearly: CezgTe;where the slope is g ¼ 400 J/K2/m3 This slope is defined by the DOS in the
vicinity of the Fermi level. The value of the slope g for Ru is intermediate between the slopes� 50� 100
J/K2/m3 for metals such as Al, Au, Ag and Cu and ten times higher slopes� 500� 1000 J/K2/m3 for Ni or
Pt.

The Ru DOS in the conduction band is shown in Fig. 3. The electron spectrum obtained agrees well
with the recent DFT simulations [4]. A discussion on the two-parabolic approximation presented in

https://srdata.nist.gov/xps
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Fig. 2. Electron heat capacity Ce of Ru increases with electron temperature. At relatively small temperatures we have Cef Te: Linear
growth of Ce slows down at Te � 10 kK (the reasons are explained in the text). At higher temperatures Te � 20� 30 kK new growth
of CeðTeÞ begins. This growth appears thanks to ionization of 4p-electrons to the conduction band through a gap 43 eV. Similar
behavior connected with ionization of a semicore shell was found for Al and W in Levashov et al. [2]. The raw data are provided in
Supplementary Materials.
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Fig. 3 is given below (Section 4.1). Here, the situation with the heat capacity is described. As stated
before, the slope g (g=p2=k2B ¼ gðεFÞ=3) is proportional to the density of electron states gðε¼ εFÞ at the
Fermi level εF : The density of states gðεF Þ is relatively high, if the upper edge ε2 of the d-sub-band is
above the Fermi energy.

Thus, for such d-metals as Au, Ag and Cu, having the edge ε2 <0 (i.e. below εFÞ, the value of g is
smaller than in the cases with Ni or Pt, where ε2 >0: Ni and Pt have narrow d-bands and small ε2 above
F

-1

s

1
2

Fig. 3. DOS of Ru in the conduction band 4d75s1. This is enlarged view of the band “5sþ4d” shown in Fig. 1. Solid black and red lines
correspond to the PAW calculations at Te ¼ 0.01 and 6 eV. Construction of the two-parabolic approximation of the electron spectrum
is also shown. Green and blue curves represent the s- and d-parabolas, respectively. The bottom of the s-band and the edges of the d-
band are marked as εs ¼ � 8 eV, ε1 ¼ � 6:4 eV, and ε2 ¼ þ 2 eV, respectively. Two-parabolic approximation was presented
previously for other metals in paper [3]. The raw data are provided in Supplementary Materials.
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εF : Therefore they have extremely high values of g: This peculiarity (intermediate value of gÞ distin-
guishes Ru from other transition metals.

In the case of Ru, the linear growth of the heat capacity at relatively small temperature changes to
saturation-like behavior above a temperature Te � 10 kK, see Fig. 2. This is a general feature of all
metals with ε2 >0: This saturation-like behavior is caused by a sharp decrease of the DOS for energies
above ε2; see Fig. 3. However, in the cases of d-metals with a d-band below εF (e.g., Au, Ag and Cu,
where ε2 <0Þ the slope of the linear growth gTe increases at Te comparable to jε2j due to “ionization” of
d-electrons to energies above the Fermi level. The change of the CeðTeÞ behavior for Ru from slow to
active growth at �20e30 kK is associated with excitation of 4p-electrons, see Fig. 2 (marked by the
vertical red line). Thus, there are three regions of the function CeðTeÞ: First, we have a linear behavior
CefTe in the electron temperature region Te(10 kK. In the second region 10(Te(20� 30 kK the
linear growth saturates. And in the third region TeT20� 30 kK the growth of Ce with Te increases
steeper.

The gap between the 4p-band and the conduction band is wide, the number of excited electrons is
small, but due to a large energy difference among the 4p and 5sþ4d bands, the energy expenses for
such ionization are significant. This circumstance increases the electron heat capacity in the third
region. A similar behavior of the heat capacity Ce was observed in Ref. [2] for other metals.
2. Thermodynamics of the ion subsystem

2.1. Cold internal energy and pressures

Often the cold curve is defined by the given parameters: density at normal conditions, bulk
modulus, sublimation energy, and Grüneisen parameter [5]. In our case we use another approach: the
dependence of the hydrostatic pressure of the hcp Ru on the density is employed. This dependence is
obtained with the DFT simulations described in Section 5.

We use a simple analytical approximation for the cold energy ε
cold
i : This approximation is based on

two power law dependencies on the density (two-term approximation):

ε
cold
i ðxÞ¼A

�
xa = a� xb

.
b
�
: (1)

Then, the cold pressure Pcoldi ¼ �dεcoldi =dv is

Pcoldi ðxÞ¼ ðA = v0Þx
�
xa � xb

�
: (2)

In approximations (1) and (2) we have the normalized density x ¼ r=r0 ¼ v0=v, where r is the
density, v is the volume per atom, r0 ¼12.47 g/cm3 is the equilibrium density at zero temperature, v0 is
the volume per atom atr ¼ r0:

Fitting the cold curves to those obtained with the DFT calculation, we find

A¼3:81 a:u; a ¼ 1:5886; b ¼ 1:3333; (3)

where a.u. means atomic units. With the set of parameters (3), the cold energy and pressure become
ε
cold
i ¼ 103:632 ðxa =a�xb =bÞ eV per atom and Pcoldi ¼ 1230 x ðxa �xbÞ GPa, respectively. Comparison of
the DFT data and approximation (2) is shown in Fig. 4.

The difference between the DFT calculations presented here and the ones published in Ref. [4]
shown in Fig. 4 stems from the different parameterizations of an exchange-correlations functional
PW91. The Vanderbilt ultra-soft pseudopotential in Ref. [4] is another source of the discrepancy. This
approach leads to a slightly underestimated value of the density at normal conditions, as seen in Fig. 4,
since the goal of the paper [4] was to calculate the elastic and phonon properties of Ru. It should be
mentioned also that a deviation in density within 5% is not unusual for DFT calculations.
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Fig. 4. Comparison of cold curves: the filled black rhombuses present our DFT data, the filled red circles are taken from DFT sim-
ulations given in Ref. [4], and the curve corresponds to the analytical approximation (2), (3). The raw data are provided in Sup-
plementary Materials.
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Fig. 5 shows the internal cold energies according to the two-term approximation (1), together with
the five values of energies taken from the paper by Chelikowsky et al. [6] (Fig. 1 therein). We
approximate these five values analytically with a two-term expression also shown in Fig. 5. Taking the
derivative of this two-term approximation of the data from Ref. [6] with respect to the volume, we
obtain an expression for the cold pressure corresponding to the paper [6]. A good agreement of our DFT
data for the cold pressure and the approximation of the DFT data from Ref. [6] is shown in Fig. 6.
2.2. Hydrostatic versus uniaxial stretching - influence of crystallographic orientation

The cold ðTe ¼ 0; Ti ¼ 0Þ DFT data are shown with the black diamonds in Fig. 4. These data are
obtained in the hydrostatic approximation, where we relax the parameter c=a for every value of the
0.8 0.9 1 1.1 1.2
normalized density x =

-7.8

-7.6

-7.4

-7.2

co
ld

 e
ne

rg
y 

pe
r 

at
om

 (e
V

)

comparison of cold energies
data point from Chelikowsky et al. (1986)
two-term appr. specially designed to pass
through the Chelikowsky's data points
our two-term appr. of our DFT data

Fig. 5. Comparison of cold energies: our DFT data approximated by the two-term expression (1), (3) (the red continuous curve), the
DFT data points (filled circles) taken from Ref. [6], and the two-term expression specially designed to fit the Chelikowsky's data point
(the blue curve).
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density. As a result of relaxation the parameter c=a achieves its equilibrium value corresponding to the
setpoint density, which minimizes the cold energy.

In that minimum the stress tensor becomes isotropic and the shear stress equals to zero. Fig. 7
shows the relaxed values of the ratio c=a as a function of hydrostatic pressure in an hcp lattice. The
difference between our calculations and those by Chelikowsky et al. [6] is caused by differences in the
quantum mechanical approximations: in Ref. [6] the LDA (local density approximation) was used,
while in our simulations we use the presumably more accurate GGA approach.

To estimate the influence of the ratio c=a on stress, we compare in Fig. 8 the hydrostatic pressures
for the cases with relaxed and fixed ratios c=a: We see that the influence is very moderate.
2.3. Thermal addition to the internal energy and pressure of the ion subsystem

In the framework of the Mie-Grüneisen approach the ion internal energy per atom at the ion
temperature Ti is presented as

εiðTi; xÞ¼A
�
xa = a� xb

.
b
�
þ 3kB Ti; (4)
-40 0 40 80
hydrostatic pressure (GPa)
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c 
/ a

Fig. 7. Variation of the ratio c=a as a result of hydrostatic compression in cold Ru. Open circles represent our PAW calculations, while
the earlier result by Chelikowsky et al. [6] are shown as filled triangles. The raw data are provided in Supplementary Materials.
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and the ion pressure is

PiðTi; xÞ¼ ðA = v0Þx
�
xa � xb

�
þ ð3 = v0Þx GðxÞ kB Ti: (5)

In these expressions GðxÞ is the Grüneisen parameter

GðxÞ¼dlnqD =dln x (6)

with qDðxÞ being the Debye temperature. The ion temperature dependent terms are added to the cold
energy and pressure in order to take into account the change of the internal energy and pressure of the
ion subsystem due to the heating.

The Debye temperature equals to

qDðxÞ¼
Z

kB
csðxÞ

�
6p2n

2

�1=3
; (7)

where csðxÞ is the speed of sound, given by the expression

csðxÞf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp0=dr

q
:

Thus from the approximation (2) we have

csðxÞf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þxa � ðbþ 1Þxb

q
:

Using the expression for the Debye temperature (7) we obtain

qDðxÞf x1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þxa � ðbþ 1Þxb

q
f

fx1=3
ffiffiffiffiffiffiffiffiffi
yðxÞ

p
; (8)

where x; as explained above, is a density ratio. In the expression (8) we introduced the designation
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yðxÞ¼
�
ðaþ1Þxa �ðbþ1Þxb

�.
ða� bÞ:

Such expression for yðxÞ leads to discontinuity in the Debye temperature (8) and the Grüneisen
parameter (6), when the function yðxÞ becomes negative at

x<
�
bþ 1
aþ 1

�1=ða�bÞ
:

For this reason we change yðxÞ to the positive at all values of x function

y0ðxÞ¼
ðaþ 1Þx2aþ1

bþ 1þ ða� bÞxaþ1; (9)

for which y0ð1Þ ¼ yð1Þ, y00ð1Þ ¼ y0ð1Þ, and yðxÞ and y0ðxÞ have the same asymptotic behavior at large x.
Taking this into account, we replace yðxÞ in (8) with y0ðxÞ and write

qDðxÞfx1=3
ffiffiffiffiffiffiffiffiffiffiffi
y0ðxÞ

p
(10)

instead of expression (8).
From (10) we obtain the expression for the density dependent Grüneisen parameter

GðxÞ¼1
3
þ1
2
dlny0
dln x

¼1
3
þ 1
2

ð2aþ 1Þðbþ 1Þ þ aða� bÞxaþ1

bþ 1þ ða� bÞxaþ1 ; (11)

which is used in our 2T-HD code. The dependence (11) is shown in Fig. 9.
Let's estimate value Gðx¼ 1Þ: It is known that

G¼b B Vmol=c;

where b ¼ 3,6:4,10�6 K-1 is the thermal volume expansion coefficient, Vmol ¼ 8:1,10�6 m3/mol is the
molar volume, c ¼ 24:06 J/(mol K) is the molar heat capacity. Values of the bulk modulus B vary in
different sources [4,6,7], but can be estimated to the value B ¼ 320 GPa. Using this value we obtain G ¼
2:1, which is close to our value Gðx ¼ 1Þ ¼ 2:3.
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Fig. 9. Variation of the ion Grüneisen parameter with density according to expression (11).
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3. Thermodynamics of the electron subsystem

3.1. Thermal addition to electron energy

Heat capacity of the electron subsystem is analyzed in Section 1.1.2 and in Fig. 2. Here we present a
more general description including the pressure and internal energy increase due to heating of the
electron subsystem. We introduce the electron energy Ee and electron pressure Pe as

EeðTe; xÞ¼ EðTe; xÞ � EðTe ¼0; xÞ; (12)

PeðTe; xÞ¼ pðTe; xÞ � pðTe ¼0; xÞ: (13)

In the definitions (12) and (13) we assume that the ion subsystem is cold. This means that ions are
motionless and that they are fixed in their equilibrium positions in the lattice. Similar approaches were
developed earlier for other metals [8]. The second terms in the definitions (12) and (13) are calculated
not at Te ¼ 0, but at Te ¼ 1000 K. The value Te ¼ 1000 K is very small relative to the Fermi energy. Thus,
these replacements introduce negligible changes.

Energy (12) and pressure (13) are calculated using the DFT approach described in Section 5. In these
calculations we limit ourselves to the case of normal density Ru: x ¼ 1; x ¼ r=r0: The dependence on
variation of the density is introduced analytically employing the Fermi gas approximation. The unit cell
height to base hexagonal ratio c=a was relaxed to its equilibrium value at every value of the electron
temperature as is explained in Section 2.2.

The DFT calculations show that dependence of the Fermi energy of Ru on the compression and
stretching is approximately consistent with that of εFfx2=3 in our range of densities. This means that
the effective mass of the s-electronsmsx const in this range. Calculation based on the s-band parabola
shown in Fig. 3 givesms ¼ 0:8me;whereme is the free electronmass. The effective mass of s-electron is

ms ¼ Z2

2εF0

�
3p2zsni

�2=3
;

where εF0 is the Fermi energy at x ¼ 1, zs is the number of s-electrons per atom, ni is the concentration
of ions.

Based on this assumption ðms x const), we introduce a variable

t¼6 kB Te
.�

εF0 x2=3
�
¼6:463,10�5Te

.
x2=3; (14)

with εF0 being the Fermi energy at normal density x ¼ 1: The numerical value for t (14) corresponds to
the temperature Te measured in Kelvin, density x ¼ 1; and Fermi energy εF0 ¼ 8 eV. The energy εF0 ¼
8 eV corresponds to our DFT calculations of the electron DOS shown in Figs. 1 and 3. Physically the
definition (14) represents the electron temperature normalized to the current value of the Fermi en-
ergy dependent on the density.

It is known [9], that at low electron temperatures kB Te≪εF the internal energy of the electron
subsystem calculated per unit of volume is a power series expansion starting from a term proportional
to T2e :

EeðTe;neÞ¼3
5
ne εF

"
5
12

p2
�
kB Te
εF

�2

þ…

#
; (15)

where ne is the concentration of electrons, the dots referring to higher order terms on the dimen-
sionless temperature kB Te=εF :We see that the temperature Te and density ne variables are inseparable
in the expression for the electron energy (15), which means that the function EeðTe;neÞ cannot be
represented as a product of factors TðTeÞ and NðneÞ.
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Thus, we introduce a variable t (14) (dimensionless temperature) and search for the electron energy
(15) in the form

EeðTe; neÞ¼ x5=3FðtÞ; (16)

where Ee is the electron energy density (12) measured in GPa (1 GPa ¼ 109 J/m3). We use a finite order
Pade approximation to describe the function FðtÞ (16):

FðtÞ¼A0t
2
�
1þA1 tþA2 t2

�.�
1þB1 tþB2 t2

�
: (17)

There are five parameters A0;A1;A2;B1;B2 in our approximation of electron energy and we adjust
these parameters to the DFT data for the electron energy calculated according to (12). The resulting
values are

A0 ¼47:8807; A1 ¼ 1:066574073; A2 ¼ 0:828076738; (18)

B1 ¼ � 0:895444194741; B2 ¼ 2:114074407399:

A comparison of the electron energy calculated using the DFTapproach and the Pade approximation
(16), (17), and (18) is shown in Fig. 10, where the crosses represent our DFT simulations described in
Section Experimental Design, Materials, and Methods. The errors in the computations are larger at low
temperatures. Therefore, we omitted the first data point in Fig. 10 at Te ¼ 2 kK from the DFT dataset
used to search for the coefficients (18). We use the asymptotic dependence vEe=vTejV ¼ gTe with g

equal to 400 J/m3/K in combination with the DFT data to define the coefficients (18). The dependence
EeðTe; x¼ 1Þ (16) based on these coefficients (18) is shown as the red continuous curve in Fig. 10.

The value g ¼ 400 J/m3/K is taken from Ref. [10]. If we use all DFT data points shown in Fig. 10 and
approximations (16), (17), then the slope g at low temperatures Te will be gz80 J/m3/K. Thus, a
moderate decrease from Ee ¼ 1 GPa to 0.74 GPa at the point Te ¼ 2 kK in Fig.10will decrease the slope 5
times relative to the value g ¼ 400 J/m3/K. The value Ee ¼ 0:74 GPa at the temperature Te ¼ 2 kK
corresponds to the first data point in Fig. 10, while the value Ee ¼ 1 GPa at Te ¼ 2 kK is obtained for the
red continuous curve in Fig. 10. If we use the relation g ¼ ðp2 =3Þ k2B gðεFÞ and the value gðεF Þ ¼ 0:787
eV-1 atom-1 from the electron spectrum in Fig. 3, then g ¼ 230 J/m3/K.
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Fig. 10. Careful adjustment of our Pade approximation (16), (17), and (18) of the electron subsystem internal energy to the DFT data.
This is done together with adjustment of the electron pressure (19), (20). The curves correspond to normal density Ru. The raw data
are provided in Supplementary Materials.
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This uncertainty of the slope g at Te <2 kK has only a small effect on the energy behavior at
temperatures above 2 kK. The energy Ee corresponding to temperature Te ¼ 2 kK is small: � 0:1
eV/atom, see Fig. 16. This level of absorbed energy is smaller than the melting threshold and is
significantly smaller than the energies needed for ablation. The electron subsystem of Ru is
dense, therefore the electron heat capacity CeðTeÞ increases quickly with Te and becomes com-
parable with the heat capacity of the crystal lattice ðz3kBÞ already at a temperature of around 4
kK, see Fig. 2.
3.2. Electron pressure and Grüneisen parameter

We use a similar approach to the expansion with Pade approximation (17) to describe the depen-
dence of the electron pressure (13) on the electron temperature and density. A charge neutrality is
assumed, thus the electron concentration is defined by the density. The electron pressure equals to

peðTe; neÞ¼ x5=3FðtÞ: (19)

The same representation is used for the electron energy described above (16). Of course, the co-
efficients are different for energy and pressure: the coefficients of the approximation (19), (17) for the
pressure are

A0 ¼44:2226757895; (20)

A1 ¼0:2519996727; A2 ¼ 0:0913205238175;

B1 ¼0:03005715652; B2 ¼ 0:61703087:

The same definition of the parameter t (14) (electron temperature normalized to the Fermi energy)
is used.

Comparison of our DFT data and the approximation (17), (19), and (20) is presented in Figs. 10 and
11. The original DFT data (black circles in Fig. 11) were shifted down to satisfy the condition
PeðTe ¼ 0; x¼ 1Þ ¼ 0: This shift is necessary because the DFT datawere obtained for the hcp cell without
exact adjustment of the cell size. The density was fixed at x ¼ 1 during the variation of temperature Te:
The hexagonal ratio c=a was relaxed at every DFT point.

Fig. 12 demonstrates the influence of relaxation of the hexagonal ratio c=a on the data. The 2T stage
in Ru is short, its duration is � 1 ps. During this stage the isochoric conditions are approximately
fulfilled. Also the duration of the 2T stage is not sufficient for complete relaxation relative to the ratio c=
a: Thus, the real situation is somewhere in between the two curves in Fig. 12. The difference between
the curves is of the order of 10%.

The electron Grüneisen parameter Ge is the ratio of the electron pressure to the electron energy
Ge ¼ pe=Ee of the partially degenerated electrons. For the Fermi gas this ratio is 2/3 at any temperature
as it is for an ideal classical monoatomic gas. Fig. 13 presents the temperature dependence of the
parameter Ge for two normalized densities x ¼ 1 and x ¼ 0:8; x ¼ r=r0: The dependence for density x ¼
1 directly follows from our DFT data for the electron pressure (Figs. 10 and 11) and electron energy
(Fig. 10). The dependence for the decreased density x ¼ 0:8 in Fig. 13 is obtained from our Pade-like
approximations (16), (17), (18), (19), and (20) based on the Fermi gas approximation and on the DFT
data for the normal density x ¼ 1:

As one can extract from Fig. 13, the Ru electron subsystem pressure response to the heating is steeper
than that of a Fermi-gas system - its Grüneisen parameter shown in Fig. 13 is smaller than the value of 2/
3, if we exclude the low temperatures range. At the high electron temperature part the difference
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between the two curves can be explained by the energy expenses required for the ionization of 4p-
electrons, see Fig. 2 for the electron heat capacity and the discussion about this feature in Section 1.1.2.

3.3. Dependencies of electron energy and pressure on density

The density dependencies of the electron energy and pressure described with the Pade approxi-
mations (16), (17), (18), (19), and (20) are shown in Figs. 14 and 15. These dependencies react
moderately to a variation of the density. Even a factor of two reduction of the density leads to a
moderate decrease of the electron energy and pressure:

Eeð2 eV;1Þ
Eeð2 eV;0:5Þ¼1:7;

Eeð1 eV;1Þ
Eeð1 eV;0:5Þ¼1:6;
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peð2 eV;1Þ
peð2 eV;0:5Þ¼1:8;

peð1 eV;1Þ
peð1 eV;0:5Þ¼1:5:

We emphasize again that during the 2T stage only a limited variation of the density takes place,
because this stage is short � 1 ps.

Above, in expression (16) and in Fig. 10, the electron energy is described as energy per unit of
volume. Fig. 16 shows this energy per unit of mass. A transformation rule is: 1 GPa/0:084=x eV/atom,
where x is the normalized density. The volumetric density of electron energy depends weakly on
variation of the density, see Fig. 14. Therefore, the stretching moderately increases the electron energy
per unit of mass, see Fig. 16.
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4. Kinetic coefficients in one- and two-temperature Ru

4.1. Conductivity and electron-electron processes

The rate of diffusion of electrons transporting charge and heat depends on the collision frequency n:

At normal conditions (room temperature) electron-ion scattering dominates over electron-electron
scattering, since electrons are strongly degenerated.

In the 2T regime the electron temperatures Te are high. The concentration of electrons ne ðkB Te =εF0Þ
in a temperature layer around the Fermi level increases, and the electron-electron scattering becomes
significant and even overcomes the electron-ion scattering, see Refs. [11e13]. The electron-electron
contribution is usually described within the approximation, where the frequency nee of electron-
electron collisions is proportional to T2

e :

In reality the fast growth of the frequency neefT2
e saturates rather early, at moderate values of

electron temperatures [3,11], similar to a situation when a linear growth of electron heat capacity Ce ¼



Yu. Petrov et al. / Data in brief 28 (2020) 10498016
g Te turns into a non-linear dependence, see e.g., Fig. 2. The deviation from the dependence neef T2e
influences very significantly the 2T electron thermal conductivity k:

One of the widely used approximation [12] for the conductivity k is

k¼C

�
q2 þ 0:16

�5=4�
q2 þ 0:44

�
q�

q2 þ 0:092
�1=2�

q2 þ b qi
� ; (21)

where q and qi are the electron and the ion temperatures normalized to the Fermi energy, C and
b are material dependent constants. Approximation (21) is based on the free electron gas model
and can be simplified if one considers particular temperature regimes: firstly, at low tempera-
tures it tends to the well-known limit kfTe=Ti; secondly, in the intermediate range of temper-
atures Te the corresponding collision frequency behaves as A Ti þ B T2

e ; [11,12]; and, thirdly, for
very high temperatures Te the approximation (21) scales as T5=2e with temperature Te (plasma
limit) [11].

Another popular approximation [12] is

k¼ð1 =3Þv2F Ce
.�

A Ti þB T2e
�
; (22)

where vF is the Fermi velocity, and Ce is the electron heat capacity.
In the present approach we use a parabolic approximation [3,11,13,14] of the electron DOS (see

Fig. 3). In the calculations of thermal conductivity we use the solution of the Boltzmann equation in the
relaxation time approximation [3,11] and the geometrical distribution of the DOS presented as the
Fermi sphere of s-electrons overlapping in the momentum space with a spherical layer of d-electrons.
The s-sphere occupies the range of s-electron energies 0< εs < εF ; while the d-layer is located in the
shell ε1 < εd < ε2 [3,11].

Results obtained for the conductivity k strongly deviate from approximations (21) and (22) at
elevated electron temperatures. The approximations (21), (22) significantly suppress values of k,
because they overestimate the frequency of electron-electron collisions [11].

Another drawback of the approximations (21) and (22) is that they do not include the s- and d-
band separately. In our theory we consider these bands as connected, but independent entities.
They are connected through the normalization condition

R
gsf þ

R
gdf ¼ zs þ zd; where gs; gd are

partial densities of states of the s- and d-band electrons, f is the Fermi distribution, zs; zd are
numbers of s- and d-electrons per atom in the conduction band; zs ¼ 1; zd ¼ 7 for Ru 4d75s1: This
condition is used to define the dependence of the chemical potential on the electron temperature.
After that the partial thermal capacities are calculated. The s-band electrons give the main
contribution to the transport of heat and charge. The effective masses of s- and d-electrons are
calculated using the two-parabolic approximation, see Fig. 3. The obtained values are ms ¼ 0:88me

and md ¼ 3:62me.
4.2. Calculation of electron-electron scattering

The total thermal conductivity k is defined by electron-ion and electron-electron processes.
Combining these processes we write

k¼ð1=ksi þ 1=kseÞ�1; (23)

where ksi and kse are partial contributions.
As written above, at not too high electron temperatures Te the term kse in (23) is

kse ¼
�
p2
.
6
�
nskB ðkBTe = εFÞv2F

.
nse: (24)

For small values of Te we have
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nsefðεF = ZÞ ðkB Te=εFÞ2:

Therefore

kse f
Z kB
ms

ns
εF

kB Te
fx

1
t
; (25)

where x ¼ r=r0 and t is defined by the expression (15). In formula (25) the term proportional to the
density x comes from the electron thermal capacity per unit of volume in the Drude model (24) for
thermal conduction. The dependence on t in (25) appears as a result of dividing the temperature
dependent heat capacity by the temperature dependent collision frequency in (24).

Formula (25) leads us to the idea to look for the dependence of the thermal conductivity on density
and temperature in the form of a product:

kseðTe; xÞ¼ x QseðtÞ; (26)

where t is the normalized temperature t ¼ 6 kB Te=εF (14), and εF ¼ εF0 x2=3 is a quantity depending on
the normalized density.

The electron thermal conductivity kse is defined as the sum of two partial thermal conductivities

k�1
se ¼ k�1

ss þ k�1
sd ;

because the heat transfer by s-electron slows down due to scattering on both s- and d-electrons.
The conductivities kss and ksd are calculated at x ¼ 1 for many different electron temperatures Te

covering a wide range of values Te: To simplify the 2T-HD code, the obtained data kðTe; x¼ 1Þ are
approximated by an analytical fit

QseðtÞ¼103
1þ 0:4017tþ 1:7877t2 þ 0:3725t3

tð25:123þ 0:2524tÞ ; (27)

whereQse is measured inW/m/K. This fit (27) and equation (26) define the contribution of the electron-
electron scattering to the conductivity. The Pade approximation (27) has a right asymptotic depen-
dence (25) at low temperatures t:
4.3. Calculation of electron-ion scattering

Thermal conductivity due to electron-ion scattering can be written as

ksi ¼
1
3
CsðTe; xÞvsðTe; xÞlsiðTi; xÞ: (28)

Expression (28) follows from the Drude model. In (28) Cs is the s-electron heat capacity per unit
volume, vsðTe; xÞ is the velocity of s-electrons transporting heat along a temperature gradient. The term
lsiðTi; xÞ represents a mean free path of s-electrons between the events of collisions with ions.

As written at the end of Section 4.1, we use the normalization condition
R
gsf þ

R
gdf ¼ zs þ zd to

find the electron chemical potential mðTeÞ; its derivative vm=vTe; the internal energy of s-electrons, and
the heat capacity of s-electrons Cs per unit of volume. We present the capacity Cs as a function Cs ¼
ns kB f1ðtÞ; where t is given by expression (14). The mean electron velocity vsðTe; xÞ can be written as

vs ¼ vFðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3kBTe=ð2εFðxÞÞ

q
;

with vF being a Fermi velocity. We see that the product Cs vs can be expressed as
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Cs vsðTe; xÞ¼ x4=3CðtÞ: (29)

The product Cs vs and consequently the function CðtÞ calculated with these spectral parameters at
x ¼ 1 for a set of temperatures Te is analytically fitted with the expression

CðtÞ¼ t
�
1þ 0:2704 t2

�
1þ 0:1991 t1:9371

: (30)

The mean free path lsi is

lsi ¼1 = ðnsÞ;
where n is an ion concentration and s is an electron-ion scattering cross section. The cross section
equals to

sf u2tfu20Ti
.
qD;

with u20; u
2
t being the mean squared amplitude of zero-point and thermal lattice vibrations, respec-

tively, qD is the Debye temperature. Here we make no distinction between acoustical and optical
vibrational modes at ion temperatures Ti under consideration, exceeding the Debye temperature qD:

The hcp lattice of Ru has three acoustical and three optical vibrational modes because there are two
atoms in a unit cell of a crystal.

Considering that

u20f
Z2

M kB qD

ðM is mass of an atom), we have

sf
Z2

M kB qD

Ti
qD

f
Ti
q2D

;

and then

lsi f
ðqDðxÞÞ2

x Ti
f

y0ðxÞ
x1=3 Ti

: (31)

Here we use expression (10) to derive the dependence of the mean free path lsi on the density.
Expression (10) connects the Debye temperature with the cold curve for pressure (2), which de-
termines the stiffness of the lattice.

Substituting Cs vs (29) and lsi (31) into the Drude model (28) we obtain an expression for the
electron-ion contribution to the thermal conductivity

ksiðTe; Ti; xÞf x y0ðxÞ CðtÞ = Ti:

Let's normalize this expression knowing the room temperature (rt) value of the thermal conduc-
tivity ksiðTrt; Trt;1Þ ¼ krt ¼ 117 W/m/K. Then we have

ksiðTe; Ti; xÞ¼ krtxðy0ðxÞ = y0ð1ÞÞðCðtÞ =CðtrtÞÞðTrt = TiÞ:

Substituting here the values y0ð1Þ ¼ 1 [Eq. (9)], Trt ¼ 300 K, trt ¼ 0:0194 [Eq. (14)], CðtrtÞz trt [Eq.
(30)], we obtain
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ksiðTe; Ti; xÞ¼1:8,106xy0ðxÞCðtÞ
.
Ti: (32)

The conductivity (32) is measured in W/m/K. We see that it quickly decreases as the density de-
creases f x2aþ4=3 z x4:5 (in solid state), and behaves approximately fTe as in the frequently used
approximation ksi ¼ krt Te=Ti: At x ¼ 1 the expression (32) is very close to the dependence Tksi ¼ krt Te=
Ti:
4.4. Total two-temperature thermal conductivity

Electron-ion and electron-electron resistance both slow down transport of heat by s-electrons. A
sum of the resistances is

kðTe; Ti; xÞ¼1 = ð1 = ksi þ1 = kseÞ; (33)

where partial contributions are defined by expressions (32) and (26). These partial contributions and
the inverse sum of their resistances are presented in Fig. 17. At low temperatures Te the temperature
layer around a Fermi level is narrow, almost all electrons are degenerated, thus an electron-electron
collision frequency is small. In this case electron-ion scattering defines conductivity k, while for
elevated temperatures Te ðTi is fixed) electron-electron scattering defines conductivity k: Fig. 18 shows
how the conductivity k (33) decreases with increase of the ion temperature.
4.5. Electron-phonon coupling factor

The energy transferred from the electron to the ion subsystem per unit time and per unit volume at
Te > Ti within the Kaganov-Lifshitz-Tanatarov theory [15] is given by the expression:

vE
vt e�ph

¼aðTeÞðTe � TiÞ; (34)

where the coefficient aðTeÞ is known as the electron-phonon coupling factor. We calculate aðTeÞ ¼
asðTeÞ þ adðTeÞ taking into account the heat transfer to the ions separately from s- and d-electrons,
using the formalism described in Ref. [3]:
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Fig. 17. The total thermal conductivity kðTe ; Ti ¼ 300 K; x¼ 1Þ and its components ksi and kse .
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asðTeÞ ¼ m2
s

4p3Z7
k2BTe
r0cs

ZqD
0

dqq2U2ðqÞ

ln

0
BBB@

exp

 ðq=2þmscsÞ2
.
ð2msÞ � m� Zuq

kBTe

!
þ 1

exp

 ðq=2þmscsÞ2
.
ð2msÞ � m� Zuq

kBTe

!
þ exp

��Zuq

kBTe

�
1
CCCA;

(35)

adðTeÞ ¼
m2

d

4p3Z7
k2BTe
r0cs

ZqD
0

dqq2U2ðqÞ

2
664ln
0
BB@
exp

�
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�
þ exp
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�

exp
�
Emin � m� Zuq

kBTe

�
þ 1

1
CCA
3
775:

(36)

Here, q is the absolute value of the phonon momentum, qD is the Debye momentum, uq ¼ csq= Z is
the phonon dispersion relation written in the Debye approximation, m ¼ mðTeÞ is the chemical po-
tential. Emin and Emax are defined as:

Emin ¼ ε1 þ
1

2md

�q
2
þmdcs

�
; Emax ¼ ε1 þ

p2d
2md

; (37)



Fig. 19. Electronephonon coupling factor as a function of electron temperature. The raw data are provided in Supplementary
Materials.
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where momentum pd ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdðε2 � ε1Þ

p
, and ε1 and ε2 are introduced in Fig. 3. The effective masses of

s- and d-electrons ms and md, respectively, are defined in Section 4.1.
The Fourier transform of the screened Coulomb potential UðqÞ is defined as (see Ref. [3] for the

details):

UðqÞ¼4pe2Z2Zinat
.
q2εðqÞ; (38)

where Zi is the effective charge number of the ion and εðqÞ is the dielectric constant, which is calculated
in the Singwi-Sjolander approximation [16]. Since it is known that the speed of sound cs can be
dependent on the electron temperature, we performed series of DFT calculations to obtain such a
dependence. We found that it can be approximated by an expression csðTeÞ ¼ 7:25þ 0:2Te km/s, where
Te is in eV. Such dependence has an insignificant effect on the electron phonon coupling factor for Te
below 20000 K.

We do not take into account the dependence of a on the ion temperature Ti. Such approximation is
accurate for ion temperatures much higher than the Debye temperature (555 K for Ru, [17]). The
dependence on the density is also neglected, since the 2T stage in Ru is short and the density does not
change significantly during that stage.

The integrals 35 and 36 are solved numerically for different electron temperatures Te. The data are
fitted by

aðTeÞ¼
�
18�12:5*Te

50þ Te

�
(39)

where Te is in [kK] units and a is in 1017W/m3/K. Such a simple dependence shown in Fig. 19 is used in
our 2T-HD calculations of Ru irradiated by ultrafast laser pulses.
5. Summary

We summarize the work presented above with the list of expressions for the equations of state and
the kinetic coefficients (electron thermal conductivity and electron-phonon coupling factor) that we
use in our 2T-HD calculations [1].

� Internal energy of ion subsystem: (4) and (3);
� Pressure of ion subsystem: (5), (3) and (11);
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� Internal energy of electron subsystem: (16), (17), (18) and (14);
� Pressure of electron subsystem: (19), (17), (20) and (14);
� Electron thermal conductivity: (23), (26), (27), (32), (9), (30) and (14);
� Electronephonon coupling factor: (39).
6. Experimental design, materials, and methods

Calculations based on the density functional theory (DFT) are performed using the projector
augmented wave (PAW) method within the Vienna ab initio simulation package (VASP) [18]. Some
data obtained with PAW were cross-checked using the linearized augmented-plane wave (LAPW)
method carried out with the help of the Elk code [19]. We consider the primitive cell of Ru
corresponding to the stable hexagonal close-packed (hcp) lattice with periodical boundary
conditions.

In our PAW calculations, the maximum energy of one-electron wavefunctions was fixed at 400 eV,
the density of theMonkhorst-Pack gridwas set equal to 21�21�21 and the number of empty electron
levels per atom was equal to 32. During all-electron calculations using the Elk code [19], we set the
product of the muffin-tin radius and a maximum of electron quasi-momentum beyond the
sphere with the muffin-tin radius equal to 10.0 and use the same density of the Monkhorst-Pack grid.
In our PAW and LAPW calculations we describe exchange and correlation contributions in electron-
electron interaction with PBE functional, which is a simplified generalized gradient approximation
(GGA) [20].

First of all, with DFT simulations we obtain the so called “cold curves” of Ru, which are the de-
pendencies of pressure and internal energy on density at absolute zero electron and ion temperatures.
These curves are used to define the cold additions to pressure, Pcoldi ðrÞ, and internal energy, εcoldi ðrÞ, in
theMie-Grüneisen equation of state. We develop analytical approximations of these functions (Section
2.1) to be used in the two-temperature hydrodynamic (2T-HD) simulations. Thermal additions to the
ion internal energy and ion pressure are also obtained (Section 2.3).

As a next step, we define the density of states (DOS, electron spectrum) of Ru. To reproduce electron
thermodynamics properly at high electron temperatures, we consider not only the conduction band
electrons 4d7 5s1, but also electrons from the lower shells 4s2 and 4p6 (semicore electrons). They are
included in the form of the PAW pseudopotential that we use. The effect of the semicore electrons is
taken into account by using the extended sv form of the PAW datasets for Ru provided in the VASP
package, which includes the semicore electrons in the same basis of plane waves as for the conduction
electrons.

Finally, the internal energy of the electron subsystem, electron entropy and pressure (PAW calcu-
lations) are computed at different electron temperatures Te for fixed volumes. During these calcula-
tions, ions are fixed in their equilibrium positions, thus ion temperatures are Ti ¼ 0: The initial lattice
constants are a ¼ b¼ 2.68 Å and c ¼ 1:5789 a at Te ¼ 1000 K. These lattice parameters correspond to a
density of 12.7 g/cm3.
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