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A B S T R A C T

Short but intense laser pulses may produce the high surface temperatures of metal or semiconductor targets
exceeding the corresponding melting points. Hydrodynamic modeling of nano-scale fragmentation of a thin
surface layer is feasible if the reflectivity and heat conductivity coefficients, usually obtained from experiments,
are available. However, for such materials as silicon and titanium the experimental electric resistivity and heat
conductivity are available only in narrow temperature ranges above the melting points. On the other hand, the
heated surface layer keeps its initial density during a short two-temperature stage because the timescales of both
femtosecond laser heating and electron-ion energy exchange are too short for material expansion. The short-
lived high-temperature states of materials in this layer are also challenging for experimental study with tech-
niques such as electrical explosion of wires or films.

We perform accurate simulations of several materials in such states, including aluminum, copper, gold, si-
licon, and titanium, at the corresponding equilibrium volumes at room temperature and along their liquid-vapor
coexistence curves using both classical and quantum molecular dynamics. The corresponding electron transport
properties calculated by the Kubo-Greenwood theory are presented.

1. Introduction

Nano- and femtosecond laser pulses are used in many technologies
to act on surfaces of metals or semiconductors, where surface treatment
or transfer of material is required [1,2]. To cite a few examples for
illustrative purposes: formation of nano-antenna arrays on the metal
surface as emitters at surface plasmon resonance [3,4], producing of
similar nanostructures on silicon [5-7], modification of the optical and
mechanical surface properties at the meso- and macroscale by femto-
second pulses [8], as well as a spark discharge in fuses by nanosecond
pulses [9,10] and production of nano-particles via phase explosion
[11]. Also, irradiation with femtosecond pulses is one of the primary
methods for experimental investigations of “hot-dense”matter, which is
of fundamental importance for the physics of planets and inertial
thermonuclear fusion [12-14].

After moderate laser irradiation within a relatively long duration in
the range of 10−7–10−11 s, a significant change in the temperature of
substance and/or its density occurs in the heating surface layer. For the
nanosecond laser pulses, the heating of the surface layer takes a longer
time than the characteristic duration of electron-ion relaxation and

acoustic unloading of stresses generated by heating. Due to this, the
heating in the surface layer takes place simultaneously in both the
electron and ion subsystems, which is accompanied by the isobaric
expansion.

But for femtosecond irradiation, the energy exchange between hot
electrons and cold ions takes place during approximately 1–10 ps while
the material density changes only slightly. For absorbed laser fluences
typical for the frontal ablation, the electron temperature decreases from
several eV to thousands of Kelvin, becoming one order with the ion
temperature. Because this, two-temperature evolution of material state
lasts several picoseconds, the experimental diagnostics of the heated
layer has a number of limitations, among which the spatial and time
resolutions, and the possibility of studying the states in the bulk. The
time resolution of the order of 100 fs can be achieved by using the
“pump-probe” method [15]. Recently, the experimental analysis of the
material states within a few micrometer layer is being performed in
Refs.[16,17] with using X-ray diffraction techniques.

Two-temperature modeling [18,19] is often used as a more acces-
sible and convenient method to obtain the necessary description of
laser-initiated processes. It requires many parameters of the material in
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the two-temperature states, which may differ significantly from the
equilibrium values. It is also necessary to have a wide-range equation of
state and to know the contribution of the hot electron subsystem to both
the thermodynamic and transport properties [19-21].

In the framework of thermodynamic perturbation theory [22,23], it
is possible to consider electron thermodynamic potentials as functions
of electron temperature only. The most commonly used approaches
[24,25] for the problem of electron-phonon heat transfer demonstrate
that the heat transfer rate divided on the difference of two temperatures
is independent of the ion temperature. Thus, a new model should be
developed for calculation of the two-temperature heat conductivity
considered as a function of three parameters: density and two tem-
peratures.

There is a number of approaches to this problem, ranging from
simple analytic expressions of the form +T aT bT/( )e e i

2 [26], which cor-
responds to the low-temperature electron properties according to the
Drude model, as well as the empirical formula “ 5/4” [27], which uses a
more complex but still fixed functional form for all metals characterized
by two arbitrary parameters C and β:
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where TF is the Fermi temperature of free electron gas in a metal. In-
vestigations of electron transport properties in two-temperature states
[28-32] show the good agreement with the experimental data measured
at the equilibrium temperature. But contrary to the prediction of the
well-known “ 5/4” model, Refs. [29,31] demonstrate that the electron
heat conductivity increases linearly with the electron temperature.

These methods show poor agreement with the calculations via the
Kubo-Greenwood theory in many examples, even if we consider the
qualitative behavior of heat conductivity with increasing electron and
ion temperatures [30,31].

To address this issue, we used previously the solution of the
Boltzmann kinetic equation in the relaxation-time approximation [33],
which is found to be in good agreement with the first-principles Kubo-
Greenwood calculations [30,21]. However, this approach has two as-
sumptions that require verification. First, the experimental electric re-
sistivity, retrieved by the Drude model, were widely used for determi-
nation of the electron-ion collision frequency. Here, the main question
is how the deviation of density from initial equilibrium one disturbs the
results of data retrieval. Secondly, the solution of the Boltzmann kinetic
equation for electron-electron collisions is beyond the formal applic-
ability conditions, because the average changes of the electron mo-
menta after such a collision may be comparable with their initial va-
lues. The latter violates the basic assumptions used in the relaxation-
time approximation [34]. To verify the applicability of these assump-
tions, it makes sense to calculate the electron heat conductivity for a list
of materials of interest using a method combining the possibilities of
quantum molecular dynamics (QMD) to simulate the two-temperature
states with the Kubo-Greenwood formula taking into account electron-
electron collisions [35].

In this paper, we applied this method to investigate the equilibrium
and two-temperature states of hot materials at their normal densities.
Presently such states are studied experimentally in electric explosion of
wires and foils 36,37], which allows us to verify the conclusions of
these works. In the next section, we present the main details of the used
first-principles calculation method, where in the second subsection the
special attention is paid to convergence of our results with the com-
putational cell size for copper. Previously obtained results of the con-
vergence test demonstrated by Knyazev [38] show that even for such a
simple metal as aluminum the achievement of size convergence is
limited by presently available computational resources. Next in
Section 3, we show the test for copper to compare with our earlier re-
sults [33] with the data of the first-principles approach for the total
frequency of electron collisions at variable electron and ion

temperatures. Then, the main group of results for isochores at normal
densities of copper and gold are presented. The calculated properties of
stretched metals and semiconductors (Al, Cu, Si, Ti) are given after-
ward, where a dependence on the used exchange-correlation functional
is specially investigated for silicon.

2. Computational methods

2.1. Scheme for calculation of transport properties

Computational package VASP [39,40] was used. Initially, the ideal
lattice of the substance was considered, which was then heated to the
target temperature using the Nose-Hoover thermostat. The duration of a
heating stage was set on 1000 steps if the target temperature exceeded
4000 K. In another case, the first heating was carried out up to 4000 K,
and then cooling also with a thermostat for 1000 steps. The step value
varied with the material under consideration. It is shown in Table 1.
After the melting was completed, a set of configurations was selected at
the stage where the system was in the NVE ensemble. For each ther-
modynamic state for which the heat conductivity has been evaluated,
there were at least five atomic configurations that were spaced from
each other at least by 50 steps. The duration of this stage was set on 300
steps.

The electron wave functions in the framework of the density func-
tional theory (DFT) used in QMD calculations were reproduced using
the projected augmented waves (PAW) approach [41]. The exchange-
correlation interaction was described in the generalized gradient ap-
proximation [42]. To this aim, the PAW-potentials library included in
the VASP package was used. The number of electrons per atom con-
sidered as valence is given in Table 1. At the stages of heating and
equilibration in NVE ensemble, the electron structure was reproduced
by only 1 Γ-point in the computational cell. This simplification allowed
us to use the version of VASP optimized for Γ-point calculations. The
number of empty electron states was taken to ensure the convergence of
the transport properties. Its value for material is also shown in Table 1.

In the case of titanium, a version of the PAW potential was used,
where in addition to valence 3d24s2 electrons, the 3p6 band separated
from valence bands by a rather narrow gap was considered by the same
basis. This version was chosen to provide accuracy of the calculation of
the forces which is enough to determine the finally calculated atomic
configurations.

The final calculation of transport properties using the Kubo-
Greenwood formula was also carried out using the VASP package [43].
At first, one-electron wave functions and self-energies were calculated,
as well as the occupation numbers. For this purpose, a more detailed
grid of Monkhorst-Pack points was used. The k-grid dimension varied
depending on the number of atoms and is given for each material in
Table 1. Other parameters (cutoff energy, the number of empty electron
states) did not change in comparison with the QMD calculation. A di-
rect calculation using the Kubo-Greenwood formula was carried out
using a module for post-processing the results of VASP, developed by D.
V. Knyazev [44,45]. This module allows us to calculate all components
of Onsager matrix including non-diagonal ones. The latter can be useful
at electron temperatures of the order of several 10, 000 K when the
decrease in thermal conductivity due to thermoelectric effects takes
place [31].

Table 1
The details of the QMD and Kubo-Greenwood calculations.

Metal Al Au Cu Si Ti

Ionic timestep, fs 1 2 1.5 1 1
Number of valence, e− 3 11 11 4 10
Empty states per atom 3.2 10 10 6 8
Smearing of δ-function, eV 0.1 0.1 0.1 0.2 0.15
Number of atoms in the computational cell 500 128 128 64 128
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The smearing of the Gaussian function is responsible for the accu-
racy of the Fermi “golden rule”, which has the form of the Dirac
function − +δ ε ε ω( ℏ )i j in analytical calculations, where εi and εj are
the one-electron energies between which the energy is changed by ωℏ .
The smearing values providing a stable result are given in Table 1.

2.2. Determination of a proper atomic configuration

The diagnostics of the obtained atomic configurations was carried
out with the help of the calculation of a pair-correlation function (PCF).
For some thermodynamic states, there are data from experiments or
previous calculations, which made it possible to compare the available
data. In Figs. 1 and 2, the PCF‘s of the considered metals and liquid
silicon is shown but copper which data are presented in the next sec-
tion.

We can observe the good agreement of the PCF‘s presented in Fig. 1.
Also, the PCF for titanium (see Fig. 2 (b)) found in the QMD calculation
is in good agreement with the result of the experiment [48]. In the case
of silicon represented in Fig. 2 (a), the situation is worse, since the
calculation data have the good agreement with one of the two pre-
sented experimental results and only for the first coordination sphere
[49]. Further correlations of the density are not in agreement with any
one of the two experiments [49,50]. Obtained here results correspond
to their rapid attenuation after the first peak, as takes place at the
temperatures near critical points of metals [51,52]. At the end of this
section, we will provide a test for silicon where some hybrid functionals
are used for determination of electronic wave functions.

The cell size was determined as a compromise between the re-
quirement to check the convergence of the result and the computational
capabilities. In the case of aluminum, where there are only 1500 elec-
trons in the cell. Thus, the calculation can be carried out with
500 atoms. Considering the data [38], we can claim that this value can
be considered as reliable, because the values obtained at 256, 500, and
1372 atoms in the work [38] are quite close. Here we take into account

the fact that the smearing defined in this work differs from the data of
Ref. [38], where a jump in the conductivity value occurred after
reaching 500 atoms together with a decrease in the smearing value. In
the cases of gold, copper, and titanium, we have to deal with a large
number of electrons. Although in the next section we show that there is
a principal opportunity to carry out a calculation with the value of the
number of atoms greater than 1000, we immediately note that this test
provided for one thermodynamic state (Te= Ti=2000 K, 8 g/cm3) was
more time-consuming than all other calculations of heat conductivity of
four metals. At the moment, we consider the limit size of the compu-
tational cell of liquid noble metals to be in order of 100 atoms in the
case of serial calculations.

As it should be noted from Table 1, in the case of gold and copper
the initial lattice corresponded to the base-centered cubic (bcc), rather
than to the stable face-centered (fcc) symmetry. In the next subsection,
where many types of copper configurations at the same ion and electron
temperature as well as density have been studied, it will be demon-
strated that the results for the transport coefficients are insensitive to a
type of cubic lattice we specify: simple, bcc, or fcc. In other cases, those
lattices that are stable under normal conditions were specified: fcc for
aluminum, diamond-like for silicon and hexagonal close-packed (hcp)
for titanium.

Reducing the computational resources consumed at quantum me-
chanical calculations of transport properties may also be achieved by
using classical (MD) simulations rather than QMD ones. Omitting the
question of the possibility of development of a two-temperature in-
teratomic interaction potential, which is the subject of a particular
scientific discussion [53], we will focus on the reproduction of an
equilibrium state, including both the isochore of an equilibrium density
(at T≈ 300 K) and the binodal. To ensure this method is acceptable, we
have carried out a number of calculations of the atomic configurations
for aluminum and gold, obtained using both MD and QMD. We used
previously developed potentials [54] based on the embedded-atom
method.

Fig. 1. Pair-correlation functions of Al and Au in the
states close to the melting points. a: Aluminum at
density of 2.35 g/cm3 and temperature of 1000 K.
Blue dashed line is used for the data of QMD cal-
culation, red line corresponds to classical MD si-
mulation, open circles represent the experimental
result [46] at temperature of 973 K. b: Gold at den-
sity of 17 g/cm3 and temperature of 2000 K. Used
designations are the same as in Fig. 1 (a). Experi-
mental data [47] had been obtained at temperature
of 1423 K.

Fig. 2. Pair-correlation functions of Si and Ti in the
states close to the melting points. a: Silicon at den-
sity of 2.59 g/cm3 3 and temperature of 1700 K. The
result of QMD calculations is shown by blue dashed
line, experimental data [49] are represented by open
circles (T=1758 K); red diamonds are used for the
other experiment [50] (T=1693 K). b: Titanium at
density of 4.1 g/cm3 and temperature of 2000 K.
Blue dashed line corresponds to results of QMD
calculations, experimental data [48] (T=1965 K)
red diamonds.
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Atomic configurations in the thermodynamic states of interest were
obtained by classical MD simulations in the LAMMPS [55] computa-
tional package. Also, as in the case of QMD calculations, the system was
firstly heated from ideal lattice and melted, and then it was kept in the
NVE ensemble to acquire atomic configurations. In the case of MD si-
mulations, the time step was fixed at one fs. In contrast to the QMD
calculations, longer runs were performed for the case of heating and
melting with the NVT thermostat (500,000 steps instead of 1000) and
also for the isolated system (300,000 and 300, respectively). This choice
makes possible to select atomic configurations with the time delay of
50–70 ps between the neighbors, which is more than one for the QMD
case on three orders of magnitude.

The data obtained from the MD calculations also enclose sets of 5
atomic configurations for each thermodynamic state. A comparison of
the results for the pair-correlation function is shown in Fig. 1 (a) and
(b).

2.3. Convergence with a cell size for a noble metal

According to the papers [31,38] dealt with the determination of
aluminum transport properties at high temperatures, including two-
temperature situation, the size of a computational cell should contain at
least 256 atoms. In the case of noble metals, where one atom has sig-
nificantly more valence electrons than three, the convergence check
remains an urgent task. In previous works [56], authors attempted to
observed convergence in copper at cell sizes from 27 to 108 atoms. In
the work [56], this check was conducted for liquid copper at density of
8 g/cm3 and temperature of 2000 K, which corresponds to a low com-
pression with respect to the equilibrium state at a given temperature
(7.5 g/cm3). Calculation of the single-electron wave functions and en-
ergies, as well as the filling numbers, was carried out using both the
PAW approach and the all-electron method FP-LAPW implemented in
the computational code Elk [57]. The latter basis, increasing the com-
putational complexity, allowed nevertheless to obtain a result that
better corresponded to the experimental data on the electric resistivity
of copper [58]. In this paper, we continue the discussed check using
only the PAW method due to the restrictions on the memory used and
the calculation time was reached for the all-electron approach in the
previous work.

Providing this check, we would like not only to increase the size of
the cell but also to consider three questions about probable simplifi-
cations of such a procedure. Firstly, in addition to the fcc cells used for
copper, melting from lattices with other symmetries will also be con-
sidered. As mentioned in Section 2, if we consider temperatures below
4000 K, then we accelerate melting in NVT thermostat by heating up to
4000 K. Fast melting and subsequent cooling to a target temperature,
occupying 2000 ion steps could make selected atomic configurations
insensible to the original lattice. To verify this assumption, we com-
pared the results obtained for the thermodynamic and transport prop-
erties of copper, considering the cells that initially had both fcc, bcc,
and also simple cubic (SC) symmetries.

The second question is the effect of the shape of a computational cell
if we are using parallelepiped with an arbitrary aspect ratio instead of a
cubic cell. At calculations of the electron transport along each direction,
we can see whether this effect is significant in comparison with the
unavoidable calculation errors due to the convergence problem. We are
interested in two possible deformations of the original cubic cell. The
first one is a significant elongation of the cell along a one of directions
to get a linear scale that we could not achieve using cubic cells. Our
interest in this is related with a simple estimation between the sizes of a
computational cell and a mean free path of electrons moving in the
lattice. At low temperatures, the latter can reach the order of
10–100 nm in noble metals, which obviously cannot be reproduced in
the QMD approach. Due to an increase in scattering rate of electrons
with ion or electron temperatures, this parameter decreases to a few
nanometers and becomes closer to the achievable linear scale of the

computational cell.
On the contrary, the second deformation is the flattening of the cell

into a thin slab. The object of this transformation, firstly, is in the
lowering of a k-points number in an irreducible Brillouin zone, if we
considering a density of the k-grid as a key parameter of QMD calcu-
lations with the same number of atoms in the cell. Secondly, in this
case, we consider not only three-dimensional and quasi-one-dimen-
sional but also quasi-two-dimensional structures.

A positive answer to the second question would mean that we can
continue the convergence check focusing on the maximum linear scale
for the computational cell rather than the simple number of atoms.

For more accurately reveal of the effect of the cell, we have chosen
their sides in a way that provide a comparison the result for a cubic (or
almost cubic) cell with the same number of atoms. We used elongated
cells with a square cross-section having 112 (2×2×7), 176
(2×2×11) atoms, and also flattened cells with 128 (2×4×4), and
216 (3× 8×9) atoms. Corresponding cubic cells had 108, 180
(5×6×6), and 216 atoms. Here, we implied that the previous as-
sumption about the independence of the transport properties on the
initial atomic arrangement had already obtained a positive response.

In Table 2, the parameters used for all the cells subjected to the
convergence check are given.

According to the data of Table 2 provided for the cell sizes and
corresponding k-grids, the density of the k-grid was maintained close to
one value in all three directions. The density of the k-grid is lies be-
tween 0.1 and 0.15 Å−1. This range of the k-grid density was estab-
lished as a result of a convergence test carried out over a full range of
cell sizes and for the case of non-cubic cells.

The smearing of the Gaussian function used in the Kubo-Greenwood
formula was changed in comparison with Section 2 only in the case of
the two largest cells. In the case of cells with 500 and 1372 atoms, it
was 0.05 eV.

The number of empty electron states per atom was set to 8 for all the
cases presented in Table 1.

According to Fig. 3, we can observe a convergence with the in-
creasing number of atoms for both the types of computational cells. As
shown in the left part of Fig. 3 significant differences from a rather
smooth result corresponding to the cell with 1372 atoms are observed
only in the smallest cells with 108 and 128 atoms. There are no any
visible differences between the curves corresponding to 128 and
216 atoms in the cell, although the initial positions of the atoms in these
cells did not correspond to fcc symmetry. If we consider Fig. 3 (b), we
can see that for a sufficiently close number of atoms, the result obtained
for 243 atoms are in better agreement with the experiment in the range
of the second and third coordination spheres. This fact may be ex-
plained as a manifestation of a more significant number of neighbors
inside the cell per atom in a quasi-two-dimensional case than in a quasi-
one-dimensional one.

The comparison between the results for cubic and deformed cells,
where the number of atoms was almost the same, is also of our interest.

Table 2
The considered computational cells.

Number of atoms
in the cell

Lattice Aspect ratio for
the cell

k-grid Smearing of δ-
function, eV

108 fcc 3× 3×3 4×4×4 0.1
112 fcc 2× 2×7 6×2×2 0.1
128 bcc 4× 4×4 4×4×4 0.1
128 fcc 2× 4×4 6×4×4 0.1
176 fcc 2× 2×11 6×6×3 0.1
180 sc 5× 6×6 4×4×4 0.1
216 sc 6× 6×6 4×4×4 0.1
216 sc 3× 8×9 6×3×3 0.1
243 sc 3× 9×9 6×3×3 0.1
500 fcc 5× 5×5 3×3×3 0.05
1372 fcc 7× 7×7 2×2×2 0.05
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Considering these data, we can independence of PCF‘s on the cell shape
form, because of other parameters of these calculations were the same.
In Fig. 4 (a), we can see two curves are appreciably different, whereas
in the right figure an agreement was reached. Therefore, we can use
non-cubic computational cells with no restrictions if the number of
atoms is enough for satisfactory convergence with this parameter.

The discussion of the results obtained by our calculations based on
the Kubo-Greenwood formula for the heat conductivity and the electric
resistivity starts with the check of convergence for cubic cells. As shown
in the Fig. 5 (a), heat conductivity obtained for the cubic cells increases

with the number of particles in the cell. The type of an initial lattice,
from which the simulation process began, is marked for each point. No
differences between the data corresponding to the cells with initial fcc,
bcc, and sc arrangement of atoms are found that can overcome a level of
the calculation error. Red dashed line corresponds to the approximation
of the form:

=

+

κ N
N

^ ( ) 180.7
1.088 168.9/

.at
part
4/3

(2)

Similar behavior is observed at the Fig. 5 (b) for the electric

Fig. 3. Pair-correlation function of copper at density
of 8 g/cm3 and temperature of 2000 in the compu-
tational cells with different shapes and initial atomic
distributions. a: The results obtained for the cubic
cells in comparison with the experimental data [59]
obtained at temperature of 1398 K. b: The results
obtained for the cells with different sides are com-
pared with the same work.

Fig. 4. Pair-correlation functions of copper at den-
sity of 8 g/cm3 and temperature of 2000 K for the
computational cells where the number of atoms is
the same or slightly different. a: The results obtained
for the cubic (red line) and elongated (green line)
computational cells with 108 and 112 atoms, re-
spectively. b: The comparison of the results corre-
sponding to the cubic (red line) and planar (green
line) cells. Both cells contain 216 atoms.

Fig. 5. Check of convergence with a number of
atoms for copper at density of 8 g/cm3 and tem-
perature of 2000 K. a: Heat conductivity calculated
for the cells with cubic shape: (squares — fcc, dia-
monds— bcc, circles— sc). The fit of the calculation
data (Eq. (2)) is shown by the red dashed line. The
results calculated previously [21,56] are represented
to the left from the vertical dashed line. b: Electrical
resistivity of copper at the conditions called above.
Fit Eq. (3) are shown by the red dashed line.
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resistivity of copper. The explicit form of the approximation for electric
resistivity as a function of the cell size is written as:

= +ρ N
N

^ ( ) 41.52 0.269at
part
4/3

(3)

We can note that the functional form and the degree for the number
of particles Npart in the formulas (2) and (3) were previously assumed
instead of adjustment by the method of least squares as the other
coefficients. Their determination in the expression (3) can be carried
out using the well-known Ziman [60] formula by way of estimation of
an error occurs due to the clipping of the pair-correlation function at
large scales. It should be assumed that on a narrow range of wave
vectors q, determined from zero to 2π/a, where a is the size of the cube
side, an error of structural factor obtained from the pair-correlation
function does not depend on q.

The expression (2) is obtained from the formula (3) by the use of the
Wiedemann-Franz law. In the work [21], the authors found that in
copper this law is performed for the different electron and ion tem-
peratures.

The result of extrapolation of the experimental data [61] for copper
on a binodal curve at a temperature of 2000 K, which corresponds to a
density of 7.5 g/ cm3, gives a heat conductivity of 171W/m/K, whereas
our result for the cell with 1327 atoms — 162W/m/K. The electric
resistivity obtained for this point at the binodal measured in another
experiment [58] is almost the same as our result. This experiment gives
0.26 μOhm*m [58], while according to the results of the convergence
test we have in the limit of large cells 0.25 μOhm*m.

In the error bars shown in Fig. 5, we have taken into account the
error due to a finite number of atoms, the density of the k-grid, and the
smearing of the Gaussian function. Effects of other parameters on the
transport properties, such as the cutoff energy and the number of empty
electron states, was found to be noticeably less than those listed above.

If we consider the data for the heat conductivity obtained in the
cells of non-cubic form, it is possible to prove the insensibility of the
results to the cell shape. For Fig. 6 (a), there are shown behavior of the
diagonal components of the heat conductivity tensor κ> and κ< cor-
responding to the directions of the longest (l>) and shortest (l<) sides
of the cell. The first, as expected, is more than the second in all cases.
However, their difference has a value close to the calculation error. In
addition to the calculated components of the heat conductivity tensor in
Fig. 6 (a) the lines corresponding to the assumption that κ> depends
only on l< are also demonstrated. Here, we consider a cube with a side
is equal to the largest side of a non-cubic cell and find the number of
atoms in such a cube at the considered material density. Then, we use
the expression (2) to estimate a heat conductivity corresponding to such

a cube. The same process we provide for the smallest side of a non-cubic
cell. Due to Fig. 6 (a), the line corresponding to the largest side comes
hardly to the error bars of the calculated κ>. On the contrary, the si-
milar estimation for κ< is two times lower than those obtained in the
direct calculation. The proximity of the calculated and assumed values
in the case of the largest side is explained by the fact that the expression
(2) assumes fast convergence with the cell size. Therefore, it would be
incorrect to assume that the calculated values κ> and κ< depend only
on the cell side length.

The approximation (2) presented in Fig. 6 (a) are restricted by the
data for κ> and κ<.

However, we can show there is no even more general dependence
on the shape of the cell if the number of atoms is constant. Suppose that
the opposite is true, and the κ> is some function ϕ(l>,l<). The
functional form of such a function does not coincide necessarily with
the form of the formula (2). For symmetry reasons, the function cor-
responding to the smaller component should differ only in the order of
variables: ϕ(l<,l>). Denote the ratio l>/l< as ϵ, and enter the fol-
lowing value:

=
< <

> >

δ κ l
κ l

( / )
( / )

.
(4)

In Fig. 6 (b), the dependence of Eq. (4) on ϵ is presented. It is evident
that the straight line fitting this dependence is proportional to ϵ with
good accuracy. Therefore, we can conclude that the ratio of κ>/κ<
does not depend on ϵ. Thus, if we substitute the variables of ϕ from
l>,l< to their product and quotient, which is one-to-one mapping for
any non-zero and, of course, positive l> and l<, then we will only
obtain the dependence on the product of the two original variables.
Taking into account that the third side of our cell always coincides with
a one of the other two, we realize that only the dependence on the
volume should be preserved or, equivalently, on the number of parti-
cles.

Thus, according to the calculation results and the provided analysis,
the change in the aspect ratio of the cell sides at the fixed number of
atoms has no any effect on the convergence in size of the cell.

The main conclusions of this section are the independence of the
process of convergence in the number of particles on the initial dis-
tribution of atoms, at least if it corresponds to cubic symmetry and cell
shape. Convergence in the number of particles is achieved for liquid
copper at a temperature and density that is near the binodal, and for a
number of atoms not less than 200. With the value of 128 atoms in a cell
used in further calculations of noble metals, the convergence error due
to a finite cell size should be estimated at 25%. We also note that the
maximum of heat conductivity according to the formula (2) is close to

Fig. 6. Diagonal components of heat conductivity
tensor for copper at density of 8 g/cm3 and tem-
perature of 2000 K in the case of the cells with a non-
cubic shape. a: The results for the components cor-
responding to the long and short sides of computa-
tional cells are shown by up and down triangles. Red
dashed line represents the approximation Eq. (2)
which one was derived using the data for the cubic
cells. Green dashed line are used for the data of
usage of the approximation Eq. (2) for a number of
atoms in the cube with the side is equal to the long
side of a computational cell. Similarly, the blue da-
shed line represents an estimation obtained for a
number of atoms in the cube with the side is equal to
the short side of a computational cell. b: Di-
mensionless parameter δ as a function of the ratio
between the long and short sides of a computational
cell. The black line represents a curve obtained from
the calculated results using the least square method.
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the result [56], obtained in the all-electron approach for a fcc cell with
108 atoms that was equal to 180W/m/K.

2.4. Hybrid functionals in the case of Si

In the paper [51] dedicated to the properties of liquid and amor-
phous silicon, it is discussed that the transition from a state with
covalent bonds between atoms to a state with metal bonds occurs
gradually with increasing temperature. Determination of the electron
density distribution depends to a considerable degree on the description
of the exchange and correlation interaction between electrons. Ac-
cording to Ref. [51], usage of the hybrid SCAN [62,63] functional al-
lows to obtain the melting point closer to the experimental value
(1685 K, [64]) than by use of the generalized gradient approximation.
Further, considering the transport properties of silicon, we also apply
some hybrid functionals [65-68] to consider their effect.

In this approach, the change of the electron density in the exchange-
correlation functional is evaluated by means of gradient corrections.
This approximation can lead to an inaccurate description of the electron
density distribution if valence electrons redistribute more localized
than in metals.

Two tests were conducted to answer these questions. In the first one,
we considered silicon at temperature of 3500 K, where the transition to
the liquid metal state is supposed to be complete. In this case, calcu-
lations are also carried out for the cells of a larger size (128 and
256 atoms). The results of these calculations are given in Table 3.

According to Table 3, the convergence of the transport properties is
achieved for silicon if the computational cell contains 128 atoms.

A second test consisted of the use of hybrid functionals at the stage
of calculation of one-electron wave functions and energies. Here, the
cell size was the limiting factor, which is why such a small cell was used
in the calculations of silicon properties mentioned above. In addition to
the PBE exchange-correlation functional [42], other functionals [65,66]
and [ 67,68] were also used. If the choice of the first of them can be
explained due to its popularity between the other hybrid functionals,
the second is known as a reproducing one of experimental data for the
band gap [69]. Recently, the possibility to use this functional in the case
of the transport properties calculation of aluminum has been success-
fully demonstrated in a wide area of the phase diagram corresponding
to the warm dense matter [70]. Using these functionals, we calculated
transport properties of the silicon at temperature of 1700 K to reveal
importance of the exchange-correlation functional for the Kubo-
Greenwood calculations. The results of this test are presented in
Table 4.

According to Table 4 the hybrid HSE functional lies between the
results of the other functionals we used. In the sense of agreement with
experiment, the data obtained using this functional are in good agree-
ment. On the other hand, authors noted previously [21] that there is no
dependence was found for the heat conductivity of copper whether the
local density approximation [73] or the generalized gradient approx-
imation [42] are used to describe the exchange-correlation interaction.

3. Results

3.1. Frequency of the electron-electron collisions in the Kubo-Greenwood
calculations

In our previous works [21,56], the question was raised as to how
complete description of electron-electron interaction in density func-
tional calculations of transport properties based on the Kubo-Green-
wood formula if this type of interaction implied here in the exchange-
correlation functionals [73,42]. As we know, these functionals were
developed for electron gas at zero temperature, and their applicability
is a subject of some recent theoretical investigations [74,75]. As was
noted for copper on isochore of 8 g/cm3 and electron temperatures from
2000 to 55, 000 K [21,56], the results corresponding to these func-
tionals give almost the same result. Comparison with the analytical
model [56] for solid and liquid copper in a two-temperature state was
considered as a reason to conclude electron-electron collisions are
lacked at this calculation. Also, the idea of adding the contribution of
electron-electron collisions, obtained by our semianalytical model [76]
was discussed.

In order to obtain a clearer perception of this problem, we carried
out a series of calculations of the heat conductivity by the Kubo-
Greenwood formula for thermodynamic states with various electron
and ion temperatures. The significant difference between the two
temperatures was used in order to distinguish the effects of an electron
and ion heating. There were considered atomic configurations with 32,
64, and 128 atoms. The data for heat conductivity and electric re-
sistivity in this way made it possible to verify the convergence with the
cell size behaves the similar to the case discussed in detail in the pre-
vious section.

Data on the number of valence s-band electrons zs, their effective
mass ms, partial heat capacity Cs and mean square velocityVs

2 were used
from the model [76]. Its data for electron-electron collision frequencies
(νss and νsd) were also used. As for electron-ion collision frequency, we
used the Drude analysis of the Kubo-Greenwood calculation results for
electric resistivity ρ instead of the fit constructed by extrapolation of
experimental data with the maximum value in the Ioffe-Regel model:

+ =ν ν
e n ρ

m
.si sd

s

s

2

(5)

Here, ns is the volume concentration of s-band electrons, and ms is
the effective mass of the s-electron evaluated in the two-parabolic ap-
proximation [76].

Using this expression, we assume the following conditions. First, we
suppose that in copper the transfer of charge and energy occurs mainly
due to s-band electrons. According to the estimates made in the re-
laxation-time approximation [76], the d-band electron contribution to
the electric conductivity is much less than the s-band electron con-
tribution. Secondly, we assume that the umklapp processes in electron-
electron collisions are too weak to take into account their contribution.
Otherwise, we would add this contribution to the left side of the ex-
pression (5).

The assumption was made that the frequency of electron-electron

Table 3
The electric resistivity and heat conductivity of molten silicon at the tem-
perature of 3500 K and different computational cell sizes.

Number of atoms ρ, μOhm*m κ, W/(m K)

64 0.72(0.17) 123(33)
128 0.78(0.15) 119(33)
256 0.77(0.16) 116(33)

Table 4
The electric resistivity and heat conductivity of molten silicon at temperature of
1700 K and the different methods of calculation in comparison with the ex-
perimental data.

xc-functional/ number of atoms ρ, μOhm*m κ, W/(m K)

PBE, 64 atoms 0.5(0.2) 98(32)
PBE, 128 atoms 0.49 (0.15) 97(31)
B3LYP, 64 atoms 1.9(0.5) 41(11)
B3LYP, 128 atoms 1.6(0.3) 42(14)
HSE, 64 atoms 0.8(0.2) 60(17)
Experiment 0.73 [64] 51.5 [71]; 58.6 [72]
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collisions depends only on the electron temperature, and the frequency
of electron-ion collisions is only determined by ion temperature.

+ =ν T ν T
e n ρ

m
( ) ( ) .si i sd e

s

s

2

(6)

The latter part of the previous statement is confirmed by the results
of Ref. [31] for aluminum, where the electric resistivity obtained using
the Kubo-Greenwood formula was revealed as constant if only the
electron temperature changed. Since aluminum has one valence band,
the frequency of electron-ion collisions in it corresponds fully to the
right part of the expression (5). As for the independence of the electron-
electron collision frequency on the ion temperature, here we rely on the
fact that in the semianalytical approach we used [33,76], the effective
frequency is determined in the relaxation-time approximation by the
quantities depending only on the electron temperature. According to
the model of two-temperature electron structure of copper [76], we use
the number of s-electrons per atom is equal to 1, and the effective mass
for electrons of this band is equal to 0.77 electron mass in vacuum.

A separation of the contribution of electron s− d collisions was
provided directly from the Kubo-Greenwood calculations using Eq. (6).
For this aim, the grid of ion and electron temperatures was chosen so as
to have a series of calculations, where we can neglect by the con-
tributions of electron-electron collisions due to small electron tem-
perature. In the second series, we increase only electron temperature
and can exclude electron-ion contribution for fixed small ion tem-
perature which we have known on the previous step. At the third step,
one-temperature heating was considered, during which the frequency
of electron-ion collisions increases slowly, while the total frequency of
electron-electron collisions becomes at T=15,000 K the same order of
magnitude as νsi. Due to this procedure, we can compare the result
based on the first-principles calculations with the data of the semi-
analytical approach for both the one-temperature and two-temperature
heating (see Table 5).

Here, we should remind that Kubo-Greenwood calculation tech-
nique as it implemented in many DFT computational packages
[43,77,78] implies an application of the random-phase approximation
(RPA) in the initial expression for the flux-flux correlation function
[79]. Formally, we have no any intraband contribution using the RPA
[80]. In the work [81], the simple method was introduced which one
makes possible to include this contribution. Here, the linearization of
band dispersion and the time-dependent density functional theory
(TDDFT) are used. On the other hand, the approach [81] requires a
usage of phenomenological estimations for the coefficient which is re-
sponsible for the mean quasiparticle lifetime. We can suggest another

simple method to take this contribution into account in the static limit
for electric and heat conductivity where phenomenological assumptions
are also used.

Further, we will use the other Drude relation for heat conductivity:

=

+ +

κ
C V

ν ν ν3( { })
.D

s s

si sd ss

2

(7)

Here, Cs is the volume heat conductivity of s-band electrons, Vs
2 is the

mean square velocity of s-band electrons. This parameters as well as
one used in the expression (5) are brought from the work [76]. We
should emphasize that such an analysis based on the expression (7)
implies that s-band and d-band electrons have the same temperature. As
was recently demonstrated by the use of TDDFT calculations [82], in-
stantly excited s-band and d-band electrons are in the states of mutual
equilibrium at the timescale of about 10 attoseconds.

To establish the role of electron-electron collisions in heat con-
ductivity, the following hypotheses were proposed to investigate pos-
sible variants of describing electron-electron collisions. The first one
consists in neglecting electron s− s collisions: the frequency in the
expression (5) coincides with the total frequency in the denominator of
the expression (7):

=

+

κ
C V

ν ν3( )
.s s

si
KG

sd
KG1

2

(8)

The second hypothesis assumes that the contribution of the electron
s− d collisions obtained in the semianalytic approach [76] must be
used in the expression (7) instead of νsd

KG as it was in the previous ex-
pression:

=

+

κ
C V

ν ν3( )
.s s

si
KG

sd
p2

2

2 (9)

In the third case, we added the intraband contribution of electron-ion
collisions νss

p2 to the frequencies obtained in the first-principles calcu-
lation by the use of the Drude formula (6):

=
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κ
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2

2 (10)

The fourth hypothesis is similar to the previous but all the electron-
electron contributions are obtained in the semianalytical approach:
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κ
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ν ν ν3( )
.s s

si
KG

sd
p

ss
p4

2

2 2 (11)

The resulting heat conductivities according to the above four hy-
potheses are collected in Table 6. Observing the data for the first hy-
pothesis we can note immediately the assumption, that there are lack of
any electron-electron contributions in the Kubo-Greenwood approach,
should be discarded. In the case when the electron temperature be-
comes more than 10, 000 K, the effect of electron-electron collisions is
already large enough and must be taken into account correctly. At high
electron temperatures, the data of only second and third hypotheses are
close to the Kubo-Greenwood calculation results. We can note the result
of the fourth hypothesis is noticeable smaller than one have calculated
by the Kubo-Greenwood formula.

As was mentioned above, the fourth hypothesis is the most close to
the semianalytical approach we used [76]. Thus, we can conclude that
the use of this approach leads to an overestimation of the electron
collision frequency used in the denominator of the expression (7). The
values of the semianalytical result for νsd are close to the sum of the
other seminanalytical result for νss and the data of first-principles cal-
culations for νsd obtained by the use of the Drude formula (6). It is a
consequence of more steep growth of νsd with electron temperature in
comparison with the behavior of νss at the same conditions [33].

Using these facts, we can suppose the reason of difference between
the data of the fourth hypothesis and the Kubo-Greenwood calculation
is the interband contribution νsd

p2 included in the former case. Thus,

Table 5
Electric resistivity and effective frequencies of electron collisions for copper at
different ion and electron temperatures (in K). The electric resistivity (in
μOhm*m) calculated using the Kubo-Greenwood formula. The frequencies νsi

KG

and νsd
KG in the fourth and fifth column are the results of the separation pro-

cedure provided with the use of the expression (6) and the data from the third
column. Here, we use the parameters of electronic structure ns and ms published
in Ref. [76] and the effective frequencies of the electron-ion and electron-
electron collisions for copper in one- and two-temperature states. The effective
frequencies of s− d and s− s electron-electron collisions obtained by the use of
semianalytical approach based on relaxation-time approximation [33] with the
same parameters for ns and ms as given in Ref. [76] are shown in the sixth and
seventh columns. All data for frequencies are given in fs−1.

Te Ti ρKG νsi
KG νsd

KG νsd
p2 νss

p2

2000 2000 0.31(±0.02) 0.83(± 0.05) 0(0) 0.00001 0.02
7500 7500 0.52(±0.02) 1.08(± 0.10) 0.30(0.10) 0.36 0.37
15,000 15,000 0.53(±0.02) 1.23(± 0.15) 0.19(0.15) 1.97 1.44
20,000 2000 0.39(±0.02) 0.83(± 0.10) 0.22(0.10) 2.70 2.22
30,000 2000 0.54(±0.02) 0.83(± 0.05) 0.62(0.10) 3.38 3.65
2000 7500 0.4(± 0.02) 1.07(± 0.05) 0(0) 0.00001 0.02
2000 15,000 0.46(±0.04) 1.23(± 0.10) 0(0) 0.00001 0.02
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reliability of the semianalytical data for the interband contribution is an
open question. The similar conclusion can also be given for the intra-
band contribution calculated in the RTA approach. If we look to the
results of the third hypothesis and assume that the data of s− s colli-
sion frequency is correct, we would arrive to the contradictory con-
clusion about a role of intraband contribution to the results of the Kubo-
Greenwood calculations. Thus, both the results of semianalytical ap-
proach should pass through a revision.

Finally, the results of the Kubo-Greenwood calculation analyzed by
the Drude model shows internal consistency: the difference in the fre-
quency of electron collisions, the corresponding heat conductivity and
electric resistivity in the Drude model, are in mutual compatibility.
Taking into account the accuracy of the performed calculations, we also
may say that our results obey the Wiedemann-Franz law.

3.2. Two-temperature heat conductivity at a fixed volume

According to the results of the calculations based on the Kubo-
Greenwood formula [30] and also to the analytical models [33], the
electron heat conductivity of noble metals in the two-temperature state
differs significantly from its value under normal volume. This fact
should be taken into account when two-temperature hydrodynamic
calculations are carried out. The analysis provided for copper shows
that the results presented earlier [21] may not be accurate enough, and
they should be compared with the results of this work.

Heat conductivity, as shown in Fig. 7 (a), according to the data
obtained in this work, tends to grow linearly with electron temperature.
The results of the previous studies provide lower values, which are to be
expected as a consequence of monotonically increasing heat con-
ductivity with the number of atoms in the computational cell. In
comparison with the data of extrapolation of the experiment [61], the
calculation carried out in this work on a larger cell is closer to it, al-
though there is no such noticeable difference as in Fig. 8 (b). In contrast
to the results for electric resistivity, the heat conductivity calculated by
the PAWmethod in the case of the 32-atom cell has the same slope as in

the new calculation. At the same time, all-electron calculation [56]
gives a slower increase in the electron conductivity with the increase of
electron temperature.

In Fig. 7 (b), there are shown the calculation carried out in the PAW-
approach for 128 atoms is closer to the experimental data [58] and
demonstrates qualitatively correct behavior in comparison with the
previous data. This note relates to the results of Refs.[21,56], which
was also obtained using the PAW method but differed mainly by the
noticeably smaller cell size (32 atoms). The results of the full-electron
approach obtained in the work [21] with the same cell, are closer to the
present data and characterized by a sharper growth with electron
temperature.

The data obtained for gold, presented in Figs. 8 and 9 are gathered
in such a way to have a perception of significance of the effect of
compression from density of 17 g/ cm3, which corresponds to the
equilibrium at 2000 K, up to 19.3 g/ cm3. The differences caused by the
compression are of the same order with the error of calculation for both
electric resistivity and heat conductivity.

We can also note by comparing the left and right parts of Figs. 8 and
9, that the difference of these results is only in the way of preparation of
atomic configurations for the direct calculation of the transport prop-
erties and it disappears with the increase of electron temperature. At
low temperatures, it is quite noticeable even in comparison with the
effect of compression discussed above.

A linear increase in the heat conductivity occurs in this interval of
electron temperature. In Ref. [30], the same behavior was observed for
the thermal conductivity of solid gold with hot electrons and at density
of 19.32 g/ cm3.

3.3. Heat conductivity of molten metals at atmospheric pressure

Leaving behind the demands appropriated to the description of the
irradiation by femtosecond laser pulses, to the results that are necessary
to describe the processes inherent to the relaxation after nanosecond
laser exposure, we define firstly what we will further consider as the

Table 6
The comparison of the hypotheses based on the Drude formula (7) for the heat conductivity of copper (in W/(m*K)) at density of 8 g/cm3 with the first-principles
data. The results corresponding to the formulas (8)–(11) are shown in the third, fourth, fifth, and sixth columns, respectively. Such characteristics of s-band electrons
in copper as partial heat conductivity Cs and mean square velocity Vs

2 are brought from the work [76]. All temperatures are given in Kelvins.

Te Ti κ1 κ2 κ3 κ4 κKG

2000 2000 168(± 12) 168(± 12) 164(±12) 164(± 12) 141(±48)
7500 7500 543(± 21) 527(± 12) 432(±12) 422(± 16) 307(±104)
15,000 15,000 1617(± 60) 719(± 23) 804(±12) 496(± 12) 531(±185)
20,000 2000 3255(± 163) 967(± 29) 1043(± 12) 593(± 12) 1103(± 385)
30,000 2000 3944(± 144) 1361(± 22) 1123(± 12) 729(± 12) 1682(± 668)
2000 7500 130(± 7) 130(± 7) 128(±12) 128(± 12) 109(±37)
2000 15,000 113(± 11) 113(± 11) 111(±12) 111(± 12) 97(± 33)

Fig. 7. Transport properties of copper (ρ=8 g/cm3,
T=2000 K) in a two-temperature state in compar-
ison with the data of our previous works. a: Heat
conductivity. Extrapolation [61] of the experimental
data corresponding to temperature of 1756 K are
shown by the blue line. The results of the semi-
analytical model of electron transport presented in
Ref. [56] are shown by the purple line. b: Electric
resistivity. New data are shown by black points. Red
and green points correspond to the PAW and full-
potential calculations [21,56 ]. The blue line re-
presents the experimental data [58] measured for
the same density and temperature of 1988 K.
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equilibrium density. Here we are talking about the temperature-de-
pendent density of the liquid metal, which is the equilibrium at atmo-
spheric pressure. For aluminum and copper, the data of wide-range
equations of state were used [86]. Experimental data [58,87,64] were
used for titanium and silicon.

The results of the calculations for the group of three metals and
liquid silicon are presented below. Since these calculations relied on a
fixed heating pressure rather than volume, this makes it possible to
conduct a more detailed comparison with the experimental data than it
was done for isochoric heating.

Comparing the results of Figs. 10 and 11, obtained for aluminum
and copper melts, we can note that, within the accuracy which is proper

to the heat conductivity calculation, its behavior at isobaric expansion
can be considered as independent on temperature. At the same time,
there is a monotonous increase in the electric resistivity. At the tem-
peratures where the comparison was made with the data of the ex-
periments for aluminum [84,85] and copper [58], they have satisfac-
tory agreement with the results for electric resistivity.

As shown in Fig. 12 for the case of molten titanium, behavior of the
heat conductivity and the electric resistivity are opposite to those ob-
served previously in Figs. 10 and 11. We can explain this fact as a
consequence of one of the largest electric resistivity of the pure metals
achieved with the heating [58]. The growth of heat conductivity occurs
in accordance with the Wiedemann-Franz law κ ∼ Tρ−1. The

Fig. 8. The electric resistivity of gold in two-tem-
perature state at densities of 17 and 19.3 g/cm3 and
ion temperature of 2000 K (blue and green lines). a:
The results corresponded to atomic configurations
from QMD calculations. The experimental data of
Ref. [58] corresponding to a temperature of 2024 K
are shown by the open red triangle and the other
experimental result [83] was obtained for tempera-
ture of 1737 K are shown by open green square. b:
The results obtained using classical MD simulations
where the interatomic potential in EAM para-
metrization [54] was used.

Fig. 9. Heat conductivity of gold in two-temperature
state at densities of 17 and 19.3 g/cm3 and the ion
temperature of 2000 K (blue and green lines). a: The
results of the QMD calculations. The result of ex-
trapolation of experimental data provided by Ref.
[58] corresponding to a temperature of 2024 K are
shown by the open red triangle while the other point
[83] are evaluated using the Wiedemann-Franz law
are represented by the open green square. b: The
results of the classical MD simulations provided by
the use of the EAM potential [54].

Fig. 10. Heat conductivity (a) and electric resistivity (b) of molten aluminum at an isobaric expansion. Comparison with the experiments [84,85] represented by the
black circles and the red diamonds are given in the inset.
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corresponding coefficient in this law for liquid titanium is close to the
ideal value (2.44 10−8W*Ohm /K2) in the entire temperature range we
considered.

In the case of silicon, a moderate increase in heat conductivity is
observed (see Fig. 13), while the electric resistivity can be considered
constant within the accuracy of the calculation. We should note that
agreement with the experimental data for the melting point is not ob-
served. This issue can be caused by the insufficiency of the cell size
(64 atoms) or by an improper description of the exchange-correlation
interaction [42], which is proven to be suitable for metals. For a

substance near the transition from a semiconductor to metal, this ap-
proach should be checked in detail. Using the data of the test we de-
scribed in the last part of Section 2, we can suppose, that usage of HSE
[67,68] hybrid functional for silicon can provide better accuracy of the
Kubo-Greenwood calculations of electrical resistivity and heat con-
ductivity.

4. Conclusions

The analysis of possible improvements of the calculation scheme

Fig. 11. Heat conductivity (a) and electric resistivity (b) of molten copper at an isobaric expasion. Comparison with the experimental data [58] is shown in the inset.

Fig. 12. Heat conductivity (a) and electric resistivity (b) of molten titanium at an isobaric expansion. The data of the experiments [87,58] are shown in the inset by
the black circles and the red diamonds.

Fig. 13. Heat conductivity (a) and electric resistivity (b) of molten silicon at an isobaric expansion. The experimental results for heat conductivity [71] and electric
resistivity [64] are represented in the inset.
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used to obtain transport properties of liquid metals is carried out.
Proposals were considered to extend the possible initial configurations,
to select non-cubic cells for the calculation of electric and heat con-
ductivity tensors, and to apply the classical molecular dynamics method
to obtain atomic configurations. It was checked that the first and third
proposals can be considered as successful.

The cell size convergence of the heat conductivity of liquid copper is
investigated. It is shown that the convergence with the cell size is
achieved if the last one contains at least 200 atoms.

The role of electron-electron collisions in our calculations based on
the Kubo-Greenwood formula is analyzed. Comparison with the data of
semianalytical model based on a simplified electron dispersion law and
relaxation-time approximation, which was developed for calculations of
partial frequencies of electron collisions, reveals the results obtained by
the use of the Kubo-Greenwood formula differs significantly from the
data of the semianalytical calculations in the case of collision frequency
of interband electrons. At this time, the semianalytical data for heat
conductivity demonstrate more slow increase with electron tempera-
ture than the results of Kubo-Greenwood calculation. It agrees with the
exclusion of intraband contribution to transport properties implied in
the density-functional calculations based on the Kubo-Greenwood for-
mula.

The behavior of heat conductivity and electric resistivity of copper
and gold in a two-temperature state and isochoric heating was found
insensible to the used method of melting. The data for the electric re-
sistivity of aluminum, copper, titanium, and silicon at constant pressure
were detected in good agreement with the experimental results. In the
case of silicon, the essential role of the used exchange-correlation
functional was demonstrated.
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