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Abstract. The coefficient of the electrion-ion energy exchange in liquid aluminum is calculated
within the framework of Ziman approach for electron kinetic coefficients. Calculations are
made to study dependence of the electron-ion heat transfer coefficient on the electron and ion
temperatures.

1. Introduction

The coefficient of heat transfer between electrons and ions in a nonequilibrium electron-ion
system of a metal that occurs under the action of ultrashort laser pulses is an important kinetic
coefficient, along with the coefficient of electronic heat conduction determining the dynamics of
heating a target by a laser pulse [1]. At the same time, the intensity of the laser pulses can be
so large that the target substance undergoes a phase transition from a solid to a liquid state
[1]. An effective approach to calculating the electronic kinetic coefficients in the liquid state
is Ziman approach, which uses the relaxation time approximation with allowance for the ionic
structure factor for electron-ion scattering. With this approach, it is possible to obtain both
single-temperature and two-temperature (at unequal temperatures of electrons and ions) values
of resistivity and electronic thermal conductivity of liquid metals [2]. However, Ziman approach
was not applied to the coefficient of electron-ion heat transfer. This paper shows that the Ziman
approximation can also be used to calculate the energy exchange between electrons and ions in
a liquid metal.

2. Ziman approach for the electron-ion energy exchange in liquid metals

The ion energy E can be represented as the sum of kinetic Ek and potential Ep. Denote

dE/dt

dEk/dt
= 1 +

Cvp

Cvk
= γ(Ti).



Here, Cvk and Cvp are the contributions of kinetic energy and potential energy to the total
isochoric heat capacity of ions Cv. Per atom Cvk = 3/2kB and kB is the Boltzmann constant).
Then the change in the internal energy of the ions

dE

dt
= γ(Ti)

dEk

dt
.

To calculate the rate of change of the kinetic energy of ions per unit volume, we write it in the
form

dEk

dt
=

∫

ε(p)
∂N

∂t
(p)dp

Here ∂N/∂t(p)dp gives the rate of increase of the number of ions in the unit volume with the
energy ε(p) = p2/(2M) in the momentum interval dp and M is the mass of atom. Supposing
two-temperature situation with the electron temperature Te and ion temperature Ti we introduce
the Boltzmann distribution function of ions with their concentration ni

N(p) =
ni

(2πMkBTi)3/2
exp

(

−
p2

2MkBTi

)

and Fermi function of electrons with the energy ε′ and chemical potential µ

f(ε′) =
1

exp(ε
′
−µ

kBTi
) + 1

.

Electron states are marked with a stroke. Then considering p + q → p,p′ − q → p′ and
p → p + q,p′ → p′ − q scattering of electron and ion with the transmitted momentum q, we
can write

∂N

∂t
(p) =

∫

Φ(p,p′,q)W (p,p′,q)
2V dp′

(2π~)3
V dq

(2π~)3
, (1)

where W (p,p′,q) is the probability per unit time of specified processes with the transmitted
momentum q. Using the golden rule, this probability can be presented as

W (p,p′,q) =
2π

~
wδ(α − β),

where w(q) = w(q) is the squared matrix element of electron-ion scattering with the transmitted
momentum q and

α =
(p+ q)2

2M
−

p2

2M
,

β =
p′2

2m
−

(p′ − q)2

2m
.

(m is the electron effective mass). Squared matrix element w(q) can be presented as

w(q) =
S(q)

V 2
u2q .

Here S(q) is the structure factor of liquid metal and

uq =

∫

exp
(

−i
qr

~

)

u(r)dr

is a Fourier transform of the pseudopotential u(r) of electron-ion interaction Statistical factor
in (1)

Φ(p,p′,q) = N(p+ q)f(p′
− q)(1 − f(p′))−N(p)f(p′)(1− f(p′

− q))



when introducing designations

ε =
p2

2M
, ε =

p′2

2m
, z = exp

(

ε′ − µ

kBTe

)

,

can be written as

Φ(α, β, ε, ε′) = N(p)
(

e−α/kBTif(ε′ − β)[1− f(ε′)]− f(ε′)[1 − f(ε′ − β)]
)

= N(p)
z

z + 1

e−α/kBTi − e−β/kBTe

ze−β/kBTe + 1
. (2)

Then the energy transmitted from the electrons to ions per unit time and unit volume is

dE

dt
=

∫

p2

2M
N(p)

z

z + 1

e−α/kBTi − e−β/kBTe

ze−β/kBTe + 1

2π

~
wδ(α − β)

2V dp′

(2π~)3
V dq

(2π~)3
dp (3)

First we integarete over p′ in (3). Using spherical coordinates (p′, θ′, φ′) with z-axes directed
along q and denoting τ ′ = − cos θ′ we obtain

β = −
2p′qτ ′ + q2

2m

and after integration over φ′

dp′ = 2πp′2dp′dτ ′ = −2πm
p′

q
dp′dβ. (4)

Analogously introducing sperical coordinates (p, θ, φ) for p with designation τ = − cos θ, we
have

α =
−2pqτ + q2

2M
.

Then dp can bre written as

dp = 2πp2dpdt = −2πM
p

q
dαdp.

So dp′dp in (3) can be written as

dp′dp = (2π)2Mm
p′p

q2
dp′dpdαdβ

Thus, integration with respect to p′ implies integration with respect to β. Selecting the
factors depending on β in (3), we obtain at 0 ≤ θ′ ≤ π the integral over β:

−

∫
2p′q−q2

2m

−2p′q−q2

2m

e−α/kBTi − e−β/kBTe

ze−β/kBTe + 1
δ(β − α)dβ, (5)

which changes β onto α and reduces the statistical factor (2) to

Φ(α, ε, ε′) = N(p)
z

z + 1

e−α/kBTi − e−α/kBTe

ze−α/kBTe + 1
. (6)

Taking into account α/kBTe << 1 and α/kBTi << 1 inequalities, this expression can be reduced
to

Φ(α, ε, ε′) = N(p)
z

(z + 1)2
α

(

1

kBTe
−

1

kBTi

)

. (7)

To give nonzero result because of the δ-function, the inequality

−2p′q − q2

2m
≤ α ≤

2p′q − q2

2m
(8)



must be carried out.
From (8)

−2p′q − q2

2m
≤

−2pqτ + q2

2M
≤

2p′q − q2

2m

and

−2p′ + q

2pξ
≤ τ ≤

2p′ + q

2pξ
. (9)

This enequality (9) together with the restriction −1 ≤ τ ≤ 1 selects the following areas of the
variables p′, α, p. (Here we introduced designation ξ = m/M << 1).

1. p ≤
q

2ξ
,

q2 − 2pq

2M
≤ α ≤

q2 + 2pq

2M
, p′ ≥

q

2
(1− ξ) +

mα

q

2. p ≥
q

2ξ
,

q2

2M
(1−

1

ξ
) ≤ α ≤

q2 + 2pq

2M
, p′ ≥

q

2
(1− ξ) +

mα

q

3. p ≥
q

2ξ
,

q2 − 2pq

2M
,≤ α ≤

q2

2M
(1−

1

ξ
), p′ ≥

q

2
(1 + ξ)−

mα

q
.

Taking into account that ξ << 1 these areas cam be simpler written as

1. p ≤
q

2ξ
,

q2 − 2pq

2M
≤ α ≤

q2 + 2pq

2M
, p′ ≥

q

2
+

mα

q

2. p ≥
q

2ξ
, −

q

2m
≤ α ≤

q2 + 2pq

2M
, p′ ≥

q

2
+

mα

q

3. p ≥
q

2ξ
,

q2 − 2pq

2M
,≤ α ≤ −

q

2m
, p′ ≥

q

2
−

mα

q
.

With α ∼ q2/(2M) << q2/(2m) contribution of small values of q is small, so the restriction on
p′ reduces simply to p′ ≥ q/2. Then the range of integration in the (p, α)-plane is

0 ≥ p < ∞,
q2 − 2pq

2M
≤ α ≤

q2 + 2pq

2M
, (10)

wherein p′ ≥ q/2. Within the range (10) integration over α in (7) gives

∫
q2+2pq

2M

q2−2pq

2M

αdα =
pq3

M2
. (11)

Then the right-hand side in the equality (3) reduces to a three-fold integral

dE

dt
=

∫

∞

0
dq

∫

∞

q2/(8m)
dε′

∫

∞

0
dp

p2

2M
N(p)

z(ε′)

(z(ε′) + 1)2
pq3

M2

2π

~
w

2V

(2π~)3
V

(2π~)3
4πq2

(2π)2Mm2p

q2

(

1

kBTi
−

1

kBTe

)

. (12)

Calculating the integral over p, we get
∫

∞

0

p2

2M

p

M2
MpN(p)dp =

3

8π

nikBTi

M
.

Calculating the integral over ε′ gives
∫

∞

q2/(8m)

z(ε′)

(z(ε′) + 1)2
dε′ =

kBTe

exp
(

q2/(8m)−µ
kBTe

)

+ 1
.
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Figure 1. Change of the potential energy in liquid aluminum U(T )−U(0) in dependence on the
temperature. Circles are the results of the molecular dynamics modeling, solid line corresponds
to the analitical fit of these results

Then the calculation of dEk/dt reduces to a single integration:

dEk

dt
=

3

8π

ni

M

2π

~

2V

(2π~)3
V

(2π~)3
(2πm)24π

∫

∞

0

q3w(q, Te, Ti)

exp
(

q2/(8m)−µ
kBTe

)

+ 1
dq

× kB(Te − Ti), (13)

giving the coefficient of electron-ion energy exchange

G(Te, Ti) =
3γ(Ti)kB
(2π)3

nim
2

M~3

∫

∞

0

k3S(k)u2q

exp
(

~2k2/(8m)−µ
kBTe

)

+ 1
dk. (14)

as a coefficient in the expression

dE

dt
= G(Te, Ti)(Te − Ti).

Here k = q/~ is a wave number.

3. Results

In figure 1 the dependence of the potential energy of atoms in liquid aluminum on the
temperature is shown. Results of molecular dynamics simulations and their analitical
approximatition are presented. Analitical approximation then has been differentiated with
respect to temperature to give the contribution Cvp of the potential energy into the isochoric
heat capacity. This enables to calculate γ(Ti) dependence shown in figure 2. Then we take the
electron-ion interaction potential as the Ashkroft potential [3] with the Fourier transform in the
form, taking into account the screening of the interaction

u(q, x, Te) =
U(q)

ε(q, x, Te)
. (15)
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Figure 2. Dependence of the parameter γ on the ion temperature

Here U(q) is the Fourier transform of Ashkroft potential U(r) consisting of the empty core and
Coulomn interaction outside the core:

U(r) = 0, r < r0

U(r) = −
ze2

r
, r > r0.

Then

U(q) =

∫

U(r)e−iqrdr = −
4πze2

q2
cos q r0. (16)

Dielectric function ε(q, x, Te) in (15), describing the electron gas screening of the Ashkroft-type
interaction, was taken in the Thomas-Fermi approach:

εTF(q) = 1 +
κ2(Te)

q2
. (17)

Here the Thomas-Fermi reverse sqreening length is

κ(Te) =

√

4πe2

∂µ(Te)/∂ne
.

with the chemical potential µ(Te) and electron concentration ne. Parameter r0 was taken to be
r0 = 1.1949 a.u. to reproduce the experimental value of the resistivity of liquid aluminum in
the melting point [2].

To find the structure factor we used the classical molecular dynamics method for modeling the
motion of aluminum atoms. Interatomic potential was chosen in the framework of “embedded
atom” model, taking into account many particle forces in metals. Model “embedded atom”
potentials for aluminum were taken from [4, 5]. The use of the of the electron-ion interaction
pseudopotential and a structure factor allows us to calculate the coefficient of electron-ion energy
exchange (14). This cofficient as a function of electron temperature for values of ion temperature
Ti = 1000, 3000, 10000, 30000 K is presented in figures 3 and 4.
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Figure 3. The coefficient of heat transfer between electrons and ions in dependence on the
electron temperature Te for two values of ion temperature Ti = 1000 and 3000 K.
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Figure 4. The coefficient of heat transfer between electrons and ions in dependence on the
electron temperature Te for two values of ion temperature Ti = 1000 and 3000 K.

In contrast to the electron-phonon heat transfer coefficient in solid metals, the coefficient of
energy exchange between electrons and ions in the liquid metal state essentially depends not
only on electron, but also ion temperature.

4. Conclusion

The coefficient of electron-ion heat transfer in a liquid metal was calculated using Ziman
approach to electron transfer coefficients. Aluminum, relating to the so-called simple metals, in
the spectrum of electronic excitations of which there are only s- and p-electrons, is considered.



For such a metal, the interionic interactions weakly depend on the temperature of these electrons.
This made it possible to calculate the coefficient of electron-ion heat transfer depending on the
electron temperature, using the structural factor calculated in a single-temperature state.
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