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Abstract. Laser ablation in liquid (LAL) is important technique used for formation of
nanoparticles (NP). The LAL processes cover logarithmically wide range of spatiotemporal
scales and is not fully understood. The NP produced by LAL are rather expensive, thus
optimization of involved processes is valuable. As the first step to such optimizations more
deep understanding is necessary. We employ physical models and computer simulations by
thermodynamic, hydrodynamic, and molecular dynamics codes in this direction. Absorbing
light metal expanding into transparent solid or liquid dielectrics is considered. We analyze an
interplay between diffusion, hydrodynamic instability, and decrease of surface tension down to
zero value caused by strong heating and compression transferring matter into state of overcritical
fluids. The primary NPs appear through condensation during expansion and cooling of diffusion
zone or pure gold vapor zone when pressure in these zones drops below critical pressure for a
metal.

1. Introduction

Paper presents theoretical and simulation results on laser ablation in liquid (LAL) or into initially
solid transparent dielectrics; gold-water and gold-silica pairs are investigated. We consider and
compare ultrashort τL = 100 fs and subnanosecond τL = 50 ps pulses I(t) = I0 exp(−t2/τ2L)
and vary absorbed fluence Fabs =

∫
∞

−∞
Iabs(t) dt in a wide range up to values limited by

optical breakdown of dielectrics; threshold values for breakdown are Iinc ∼ 1011 W/cm2 for
the subnanosecond case with hν ≈ 1.2 eV [1, 2]. LAL is used to prepare colloidal solutions of
nanoparticles (NP). These processes have many technological applications, see detailed reviews
[3, 4].

In spite of numerous applications and many peoples involved in working in this direction,
a lot of problems remain poorly understood. This is because the ultrafast early stages still
are unobservable experimentally. Only rather late stages starting from the microsecond (µs)
time scale are carefully documented [5] and are described theoretically using Rayleigh-Plesset
equation. Our approach developed below covers stages before the first microsecond. The late
stages relates to formation and development of a cavitation bubble. The pulse durations from
0.1 ps to a few ns are from 7 to 3 orders of magnitude shorter than the experimentally observed
temporal range.



-200 0 200 400

�������� � ���	

0

2

4

6

8


�
�

�
�
�

�
�
�
��
�
�

�������� ������ !"#$%�&'

� � (� ��

)��*+ �� ,-#./ 

$& �&01&�� 2&%�

���3"����� �� $%�&'

)�4� �� +-#./ 

$& ���1"3& $%�&'

���3"�����

Figure 1. Temperature distributions for two cases very different in pulse durations. For
ultrashort pulse the two-temperature (2T) hydrodynamics (2T-HD) code is used [10,11] and the
profile of ion temperature Ti(x, t = 70 ps) is shown. In case of subnanosecond pulse τL = 50 ps
the 2T effects are of minor significance. Therefore the one-temperature (1T) hydrodynamics
(1T-HD) code is employed; the profile T (x, t = 70 ps) is presented; in the 1T approximation we
have T = Ti = Te. Thermal conductivity of water is included in the 1T-HD code. Temperature
and heat flux are continue at the contact boundary (CB) between gold (Au) and water (wt).
Thermal diffusivity χwt of water is more than two orders of magnitude less than diffusivity of
molten Au χAu. Therefore only a thin layer of water near CB is heated to the instant shown

Recently computer simulations shed light onto the beginning of the “hidden era” lasting
from initial stage up to the temporal range t < 1 µs before the bubble begins to form [6–11].
Ultrashort pulses with duration τL = 0.1 ps and picosecond pulses τL = 10 ps [9] were considered,
and the processes have been followed up to few nanoseconds in [6–9] and up to 200 ns in [10,11].
In all these papers the absorbed energies Fabs were comparable and of the order of ∼ 0.5 J/cm2.
In the present paper we analyze new case with the three order of magnitudes longer pulse
relative to durations 0.1 ps and five times longer than duration 10 ps considered in [9]. Let’s
mention previous papers [12–15] devoted to consideration of laser heating of metal through solid
transparent media.

At first glance, it seems surprising that dynamics at the stage beginning after instant t = 50
ps (when the 50 ps pulse is ended) is similar in the cases with so different durations τL (0.1 ps
versus 50 ps) if energies Fabs are the same (in more details this question is discussed below).
This is what we find comparing the cases with τL = 0.1 ps and τL = 50 ps, see figure 1. Thermal
diffusivity χAu of gold is large at the two-temperature (2T, Te > Ti) stage [11] relative to its one-
temperature (1T, T = Te = Ti) values in solid and liquid states. But duration of the ultrashort
pulse and duration of a 2T stage are shorter than duration 50 ps of the subnanosecond pulse.
Therefore thicknesses of the heat affected zones are approximately the same in both cases, see
figure 1.

Thicknesses of the liquid layers are approximately the same in figure 1. The thin layer
separating liquid and solid gold (this is the melting front) has position x ≈ 200 nm in both cases



at the instant shown. Our model of heat conduction includes the change of thermal conductivity
caused by melting. Therefore the gradient ∇T is smaller in the solid. For the same reason the
gradient ∇T has a sharp kink at the Au-water contact boundary (CB), see figure 1. Saying here
“for the same reason” we mean that the jump in temperature gradient ∇T at the contact is
caused by difference in thermal conductivities of water relative to hot liquid gold.

As was said, the thermal distributions are similar in the cases with the durations τL 0.1 ps
and 50 ps shown in figure 1. But there are differences also. Before saying about them let’s
describe a global structure of the 1D flow. In the both cases the foam region and atmosphere
are formed [6–11]. The atmosphere is a layer contacting with water and being in quasi-
hydrostatic equilibrium with CB as it is described in [10, 11]. The atmosphere separates foam
and water. In the case of a rather long subnanosecond pulse the atmosphere forms when CB
begins to decelerate. As it will be seen below, the CB accelerates during the rise of the pulse
I ∝ exp(−t2/τ2L), τL = 50 ps and some time after; we begin our simulations at the negative time
instant equal to −3τL.

In the ultrashort case shown in figure 1 the nucleation process and formation of foam begins
earlier than in the subnanosecond case. This is the difference between the cases in figure 1. In
the ultrashort case nucleation begins at the stage t ≈ 20 ps while in the subnanosecond case the
starting stage of nucleation is t ≈ 80 ps. Let’s mention that time is reckoned from the instant
t = 0 corresponding to maximum of a Gaussian pulse. Nucleation and foaming for the ultrashort
case (duration 0.1 ps, absorbed energy 400 mJ/cm2) were described in [10,11], while for the case
of subnanosecond pulse with the same absorbed energy the nucleation and foaming processes
are presented here below. The forest of needles seen at the temperature profile T (x, t = 70ps)
for the ultrashort case is caused by “1D foaming”. This is the representation of foaming in the
1D hydrodynamic simulations where jumps in density and temperature appears in the region
occupied by foam, see figures 15 and 16 in [11].

Nevertheless the amount of the ejected gold massmej ≈ (1.5−3)×10−4 g/cm2 is approximately
the same in the both cases. The ejected mass forms a layer separated by a gap from the rest of a
bulk gold target up to the stages ∼ 102 ns. The layer contacts with water. Velocity of the layer
drops down to very small values ∼ 1− 10 m/s at the stage ∼ 102 ns [10,11]. Fate of the layer is
unknown at the late stages ≥ µs. The gap is filled by saturation vapor of gold and has pressures
∼ 102 − 103 bars until gold has temperatures above ≈ 5 kK [10, 11]. While pressure in liquid
and later in gaseous water is ∼ 102 − 103 bars at the stage of few microseconds. Thus the gold
layer may moves back under water pressure and closes the gap if the layer is cooled down below
few kK. The layer may stick back with the bulk gold if gold in the layer remains liquid during
the shrinkage of the gap. Velocity change ∆v of the layer under pressure difference ∆p acting
onto the layer from its internal (vapor of Au in the gap) and external (CB, water) boundaries
is large ∆v = ∆p · tµs/mej ∼ 3 km/s for ∆p = 102 bars, mej = 3× 10−4 g/cm2, and tµs ∼ 1 µs.
Such velocities easily may close the gap during µs because the gap thickness is ∼ µm only. This
problem obviously needs separate consideration.

Below we will limit ourself with comparative analysis of the early (∼10s ps) and middle (∼ 1
ns) stages of the ultrashort Au-water and subnanosecond Au-water and Au-glass cases. There
are two main conclusions following from this analysis.

First. All these three cases are similar in the sense of (i) energy distribution in the surface
layer, (ii) the value of ejected mass, and (iii) the trajectory of the CB ζ(x = xCB(t), t), where
the ζ stands for kinematic (x, v, g shift, velocity, acceleration) or for thermodynamics (ρ, p, T )
quantities.

Second. The states near the CB during the middle stage ∼ 1 ns are hot and compressed,
thus both the gold and, of course, the water (with its low critical parameters) are in overcritical
states relative to their critical pressures. Therefore Au-water surface tension coefficient is zero
and diffusion is strong. Rather thick diffusively mixed Au-water layer forms around the CB



thanks to that. Later in time the pressure drops due to expansion of the pressurized layer near
the CB. Condensation into clusters and liquid droplets begins as pressure decreases below the
critical values for gold.

From the other hand, strong diffusion suppresses development of the Rayleigh-Taylor
instability (RTI), see Section 7 below. There is a limited in time interval when the RTI develops
[10, 11], see Section 3 and figure 11. Thus if the development is delayed during this temporal
interval then contribution of RTI remains insignificant. Significant contribution from RTI into
the nanoparticles (NP) production was observed for ultrashort actions and smaller (than in this
paper) absorbed energies in [8–11].

In the present paper we want to understand dynamic and thermal phenomena triggered by
laser heating of a metal target irradiated across liquid. With this understanding we describe the
synthesis of colloids through diffusion, cooling, and condensation processes proceeding during
dynamic and thermal transformations.

The paper is organized as follows. First in Section 2 we consider separation of large distances
covered by shocks in gold and water from small distance passed by contact boundary (CB).
This gives to readers an image of a global picture consisting from very wide shock compressed
volumes in liquid and metal relative to narrow region occupied by contacting hot liquid and hot
metal. Velocity of a CB decays in time quickly while shocks propagate at velocities above speed
of sound. This is why huge difference in spatial scales is formed.

In Section 3 the acceleration stage is considered (acceleration of the contact). It lasts during
laser action. Thus this stage is different depending on pulse duration. The case of an ultrashort
pulse (short, huge acceleration) differs from the case of a subnanosecond pulse (long lasting slow
acceleration). Later in time (that is after the acceleration stage) these cases behave similarly if
absorbed energies are the same.

In Section 4 duration of the stage when parameters of a metal at the CB are in overcritical
states (overcritical stage) is analyzed. It is found that this duration is a function of absorbed
energy, i.e., the overcritical states existing longer if absorbed energy is larger.

We use two-temperature (2T-hd) and one-temperature (1T-hd) hydrodynamic codes to obtain
results listed in the Sections 2–4. These codes were developed earlier and therefore we omit here
their descriptions. The description is given in the paper [11] and in the references cited in [11].
The description includes a system of dynamical equations together with initial and boundary
conditions. The codes use a Lagrangian mesh, solves dynamical, thermal, heat conduction
equations and conditions and includes variable laser energy supply [11] acting in a skin-layer of
absorbing metal.

Thermodynamic equation of states for gold and water are taken from the reference sources
and calculation approaches presented in [16–20]. They describe matter in a wide range of
thermodynamic parameters from condensed solid and liquid states to critical point and above
the critical point and to gaseous states corresponding to large expansions of initially condensed
matter. They cover temperatures from small values below room temperature and up to high
values: 105 K.

First order phase transitions are accurately presented. Latent heats of melting and
sublimation and their dependence on temperature are included. Dependence of melting or
sublimation temperatures on pressure (or, equivalently, on density) reproduces all known
experimental and simulated data: quantum-mechanical packages are used to describe areas of
phase diagram where experimental information is scarce. Dependence of saturation pressure
of gold on temperature corresponds to measured data, see [11]. Coexistence curve relates
experimental values of thermal expansion.

Embedded atom method (EAM) potentials of interatomic interactions and molecular
dynamics (MD) simulations are applied to reveal another part of valuable information in the
Sections 5, 6 and 7. Saturation pressure, curves of equilibrium between phase states, surface



tension coefficient, and description of diffusion on the base of the EAM/MD approach are
presented in Section 5. Saturated vapor pressure, equilibrium curves (boiling and condensation),
and surface tension coefficient obtained from the developed EAM potential for gold are compared
with available experimental data and with data corresponding to the equation of state used in
hydrodynamic simulations.

It is shown that EAM potential for gold used in our MD calculations gives accurate description
of all listed quantities. Necessary references to the sources where the EAM for gold was presented
in published and available forms are given below in the text of Section 5. For correct description
of condensation process it is important that the EAM potential for gold accurately presents
surface tension and binding energy of two gold atoms forming a dimer Au2.

Our model used to present water intermolecular interaction and interaction between water and
gold atoms is given in Section 5. Water in the model is described as a monatomic system. The
EAM potential for water can be found at the URL www.researchgate.net/project/Development-
of-interatomic-EAM-potentials. The EAM potential for water provides the correct mechanical
properties of liquid water including the density, sound speed, and shock adiabatic curve up to
few tens of GPa. This range pressures is enough for our applications.

Condensation of gold and formation of nanoparticles is described in Section 6. We use
EAM potentials for gold and water from Section 5 and run long MD simulations to follow
kinetics of decay of supersaturated gold vapor into two-phase vapor-liquid mixture. The cases
of pure gold and water-gold mixture are compared. In previous analysis [21–24] authors consider
condensation of vapor evaporated into vacuum or into buffer gas. These cases correspond to much
lower densities and lower temperatures. In the considered here cases (corresponding to LAL—
laser ablation in liquid) the condensation takes place in dense environment (due to confinement
by liquid), our temperatures are more close to critical temperatures and densities are much
higher. Saturation pressure exponentially depends on temperature therefore the considered
cases are qualitatively different from condensation in rarefied gas.

Section 7 demonstrates results of large scale MD simulation of ablation of gold in water.
Especially the near contact events are carefully analyzed. The EAM potentials for gold and
water presented in Section 5 are used. It is shown that dynamic phenomena (acceleration
and deceleration of contact, water resistance to expansion of gold), thermal phenomena (laser
heating, heat expansion, phase transitions), diffusion between gold and water- all together form
a set of interaction processes which accompany and finally define the rate of appearance and
size distribution of produced nanoparticles. Thus condensation into nanoparticles is considered
as a result of a chain of real complicated transition events.

2. Global and internal structures

Global structure of flow is clear from figure 2. Before action of a pulse we have two motionless
half-spaces in contact. The left one x0 < 0 is filled with water, while the right one x0 > 0
corresponds to the bulk gold target; here x0 is Lagrangian coordinate; it corresponds to initial
(before laser action) positions of material particles. Laser beam penetrates through transparent
water and heats absorbing gold in its skin-layer. Heating causes the pressure rise while the
gradients of pressure in their turn cause motion. After finishing of a pulse the spatial expansion
gradually decreases pressure. Two shock waves (SW) in figure 2 run into water and into gold
target. The pulse is rather long τL = 50 ps. Therefore it takes some time to form the shocks.
The SWs form thanks to nonlinear effects after focusing of characteristics and wave breaking.

Velocity “jump” 0.23 km/s in figure 2 covers the layer where the atmosphere and foam locate.
The “jump” characterizes expansion of the CB relative to the bottom of the foam at the instant
0.5 ns. This velocity is small (just few %) in comparison with velocity cs|Au + cs|wt = 4.5 km/s
giving the lowest limit of velocity of the increase of the distance between two SWs in figure
2. Expansion of foam proceeds as a result of easy extensibility of a vapor component in foam.
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Figure 2. Density and velocity profiles are shown. The point “m” marks current position
of a boundary between solid and liquid gold. We see that at the stage after ∼ 1 ns the near
contact layer is much more thinner than the region between the two SWs. The profiles are
plotted as functions of initial positions x0 of material particles of gold and water. Thus reader
can easily estimates masses. E.g., current mass of shock compressed water is x0|SW−wt ∗ ρ0|wt,
where x0|SW−wt(t) is position of the SW in water, ρ0|wt is initial density of water. Lagrangian
positions are motionless; x0 = 0 is the CB
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Structure of the thin layer near the CB (the “jump” in figure 2) is revealed in figure 3.
Comparison of the Au-water simulations for ultrashort pulse τL = 100 fs [10, 11] and

subnanosecond pulse with τL = 50 ps is demonstrated in figure 4. Absorbed energies are the
same. We cut out the slowly moving part of bulk gold in the ultrashort case [10,11]. Only really
significant for mixing with water and nanoparticles production part of a gold target was kept in
the simulation of ultrashort action. Comparing two simulations in figure 4 we conclude that:

First, at the nanosecond time scale and later the duration of a laser pulse varied 500 times
from 0.1 to 50 ps is insignificant.

Second, the passive part of the gold target kept in one simulation (pay attention to the
SW running into bulk in figure 4) and removed in the another one is, indeed, insignificant for
dynamics of foam and water.

But internal structures of density distributions inside the foamy layer differ, see figure 5; we
compare the cases with different pulse durations 0.1 and 50 ps. This isn’t surprising. Indeed,
durations differ 500 times. Nucleation starts at different instants: 20 and 80 ps, respectively, and
proceeds through different ways because the conditions outside to the foamy layer are different.
Let’s mention that hydrodynamic simulation accurately describes nucleation and foaming. This
was proved by comparison with experiments and molecular dynamics (MD) simulations [11,25].
If the computational cell used in MD is narrow in transverse (to main motion) directions then
the foamy region in MD also (as in hydrodynamics) looks like the chain of the condensed and
gaseous pieces, see, e.g., [26]. To describe nucleation and foaming in hydrodynamics we use
concept of finite material strength. The material strength is a value of tensile stress plim above
which material begin to decompose. The strength plim is temperature and deformation rate
dependent. We run special MD simulations [27] for gold under tensile stresses at different
temperatures for deformation rates typical in our conditions of laser actions. Thus the strength
was defined. In our calculations presented here we use expression (12) from [27] for the strength.

Expansions in water (liquid dielectrics) and in glass (initially solid dielectrics) qualitatively
are similar up to the stage when in the case of water the bubble begins to form. Corresponding
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situations are shown in figure 6. Transparent for laser light dielectric materials-solid or liquid-
are similar in their dynamic behavior under action of laser onto an absorbing target covered by
the dielectrics. Their behaviors are similar at the initial and middle stages, when compression
stress is higher than an elastic limit for solid dielectrics. Then solid behaves plastically in
unidirectional compression as does liquid. Therefore at these stages the dynamic behaviors are
similar. Typically the elastic limit for solids is of the order of fraction or one GPa, i.e. ten
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Figure 7. Density profiles near the CB for the same two cases as in figure 6

thousands of bar. At the late stage in the case of liquid dielectrics a process of bubble formation
starts. This process begins when the compression stress decreases in our case with water down
to values of the order of critical pressure for water 220 bar, i.e.= 0.022 GPa. Of course, at
this late stage solid dielectrics behave very differently relative to the liquid ones. Therefore,
obviously, the similarity between their behaviors is ceased.

In figures 6 and 7 the cases with a bulk gold target and a thick film target (initially 370
nm thick) are compared. We call a film thick if its thickness is larger than thickness of a heat
affected zone (HAZ) [28, 29]. Thickness 370 nm is larger than thickness of HAZ, see figure 1.
The case with a film 370 nm and a glass substrate is considered in connection with experiments
[30,31]. Discussion in connection with these experiments needs separate description. Figures 6
and 7 demonstrate dramatic difference between the cases with a bulk and a film targets if we
consider motion of gold; dynamics of dielectrics are similar as it follows from figure 6. Initially
the system from dielectrics and a target was motionless, thus its momentum is zero. Laser beam
introduces energy Fabs into the system, but not momentum because momentum of a photon
cloud is negligibly small. Therefore total momentum of a system is zero after laser impact.

The momentum directed into the side of dielectrics produces motions in dielectrics which are
more or less similar in both cases, see figure 6. But the motions in the gold targets triggered by
the right side momentum are very different depending on thickness of a film. In a bulk target
this momentum is carried into the bulk side and out from the near CB layer by approximately
triangular shock wave SWAu in figures 2, 4, and 6. In the case of a film this carryover is
impossible—thickness is limited. Thus all amount of the powerful push to the right remains in
a film. This causes decay of a film into a sequence of quasi-spallative-plates separated by foamy
layers in case of a film, see figure 7. Velocity of the rear-side plate is large, see figure 6.

We follow carefully every successive in time frames of our HD simulations of a thick film above
a glass substrate; thus we know how the flow evolves; only few frames are shown as illustrative
figures in the paper. We use nucleation criterion based on material strength of gold described in
paper [27]. We see how (i) the tensile stress gradually increases, how it (ii) achieves the limiting
strength, and how (iii) the Lagrangian chain of numerical cells in the Lagrangian 1D mesh is
cut by our algorithm in two separate parts: to the left part and to the right part relative to



the point where the chain was broken. At the edges of these parts the dynamical boundary
condition with small or zero pressure is imposed after breaking. The low density gap between
these edges appears.

But for strong rarefaction wave the process doesn’t ceased after formation of the first gap.
Again at some distance from the low pressure boundary condition the tensile stress appears and
begins to increase in its amplitude. It again achieves the critical value and a new spallation
layer is formed. Thus formation of a few spallation layers is possible and for strong and rather
long (subnanosecond) action this indeed takes place, see [32, 33] where this phenomenon was
also observed. The gaps are filled by foam.

Some evidence of existence of condensed relatively cold spallation plates intermitting with
foamy layers follows from experiments done in Marseille university, see papers [30,31]. They saw
cupola like frozen structure together with narrow angle spread, slow moving jet consisting from
pieces. The last spallation plate in our simulations moves slowly thus it have time to be frozen at
the surface. The faster liquid condensed plates transform into the pieces of rather slow moving
jets. The pieces are intermitted—this is the traces of foamy layers. The jet cannot be trace of
hot plasma like layer. The plasma like layer will expand wider relative to angle distribution and
faster. In [30, 31] authors see transition to the plasma like jet at very high absorbed energies
when a hole in a film (not the frozen cupola) remains.

In our sequence of simulation frames we see definitely that the gaps between the condensed
pieces (the sequence of the spallative plates) expands geometrically while the condensed pieces
remains intact- gradient of expansion velocity is zero inside the condensed pieces (if we average
this gradient over time—because the pieces oscillates—sound waves propagate inside the pieces,
oscillation period is ∼ d/c, where d—is thickness of the condensed plate, c-speed of sound).
Therefore average density of foam gradually drops down. At the rather late stage (0.5 ns) this
average density decreases to low values thanks to expansion.

3. Active dynamics: acceleration, deceleration, and comparisons

Dynamics of expansion of CB in the case of Au-wt pair is shown in figure 8. The cases with
ultrashort and subnanosecond pulses are compared. Absorbed fluences are the same 400 mJ/cm2.
In both cases intensity is given by the Gaussian law I ∝ exp(−t2/τ2L). But durations τL differ 500
times. Thus if we impose these Gaussian laws onto the plane in figure 8 then the subnanosecond
pulse will have visible left and right wings. And the rise of its left wing is proportional to the
growing shift of CB in the subnanosecond case. While the Gaussian for the ultrashort pulse
looks like delta-function at the temporal scale used in figure 8.

The speed up interval is very short for the pulse with τL = 0.1 ps. We don’t see it because
the time scale in figure 8 is too large. At this scale, it seems that in the ultrashort case the CB
starts to move immediately at the instant t = 0 with large velocity. Later in time t > 0 it only
decelerates thanks to resistance of water to expansion of gold. But in the subnanosecond case
the definite acceleration stage exists. Of course, it is related to the increase in time of absorbed
intensity at the left wing of Gaussian pump.

Influence of absorbed energy, resistive ability of dielectrics (i.e., its ability to resists to
expansion of gold), and thickness of a gold target on the trajectory of the contact boundary
(CB) xCB(t) is illustrated in figure 9; resistance of dielectrics causing deceleration of expanding
gold is higher if the decelerating material is more dense. Obviously, the shift increases if we
increase absorbed energy fixing two other parameters: density of dielectrics and thickness of
a gold layer. If we increase density of surrounding medium then deceleration is faster; initial
density of the pyrex silica used in our Au-glass simulations is 2.2 g/cm3. Compare the cases
wt/400 mJ/cm2 and gl/560 mJ/cm2 in figure 9. This is also obvious.

Less obvious are consequences of variation of thickness of a layer of Au. It seems, at first sight,
that a thick target will decelerate more slower. But there is foam formation and appearance of
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Figure 8. In this picture we compare the ultrashort and subnanosecond actions onto the Au-
water system. Thus this picture is similar to figure 4. We use the same colors for these two cases
as in figure 4. Let’s emphasize remarkable similarity of these cases as it was already mentioned in
figure 4. The trajectories are very similar if we exclude the speed up interval t < 0, |t| ∼ τL = 50
ps for subnanosecond drive

a contact layer of gold (atmosphere) [10,11]. Speed of sound in foam is low. The first portions
(atmosphere) of fragmented Au are decelerated by surrounding water or glass, while the second
portions move faster thus adding their mass to the first portions located at the CB. This is said
to underline that (i) there is a decelerated layer (atmosphere) and (ii) its mass mej may change
with time.

Analysis of simulations show that asymptotically velocity v and pressure p at the CB are
acoustically connected p = Zv, where Z = ρcs is acoustic impedance in surrounding medium.
Writing mejẍ = −Zẋ we find that ẋ ∝ exp(−t/tdec),

tdec = mej/Z ≈ (ρAu/ρ)hej/cs, (1)

where x is CB position, ρ and cs are density and speed of sound of surrounding matter. The
estimate (1) gives for the deceleration time constant a value tdec = 0.7 ns for density ratio
ρAu/ρ ≈ 10, height of atmosphere hej ≈ 100 nm, and speed of sound in water cs = 1.5 km/s.

Another important conclusion from figures 8, 9, and the estimate (1) for the deceleration
time constant tdec is that in all cases the shift xCB is very limited—it is just of the order of
micron.

The difference between ultrashort and subnanosecond laser drives is distinctly clear from
figure 10. Whereas there is a relatively prolonged acceleration interval in the subnanosecond
case, in the ultrashort case the velocity trajectory starts from high value and after that only
decelerates with time. Let’s mention that in the subnanosecond case an acceleration continues
after the instant t = 0 when the maximum of a laser pump is achieved. Thus intensity begins
to decrease while velocity still increases. Increase of velocity continues approximately up to
tmax−vel = 20− 25 ps after maximum of a pump at the instant t = 0.
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Figure 9. Trajectories of CB in four cases with a subnanosecond drive. Abbreviations “wt”
and “gl” relate to the Au-water and Au-glass systems. Digits in mJ/cm2 give absorbed energies.
There is a gold film 370 nm thick in the Au-glass cases. We use a bulk gold target in the Au-wt
case
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Figure 10. Velocities of contact boundary (CB) vCB(t). See designations in figure 9. The
digits in ps are the e-folding durations of pulses. The picture emphasizes qualitative distinctions
between ultrashort and subnanosecond pulses at the early stage. The delay of beginning of
deceleration significantly influences development of Rayleigh-Taylor instability in direction of
suppression
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Figure 11. Deceleration of contact boundary (CB) for the ultrashort pulse (USP) is marked
as “decel USP” and as “decel subNS” for the subnanosecond pulses. In the subnanosecond
case the acceleration is changed to the deceleration at the instant tmax−vel, see figure 10. After
the time interval ∼ 10 ps long after the instant tmax−vel the dependence vCB(t) asymptotically
tends to the dependence for the ultrashort pulse. Thus the deceleration for the subnanosecond
pulse asymptotically approximately tends to the deceleration in case of the USP. This is shown
by the curve “decel subNS” starting from zero and going approximately to the ẍCB for USP.
This difference in deceleration trajectory causes delay in the Rayleigh-Taylor gain, compare the
curves “gain USP” and “gain subNS” shown, these curves relate to the right vertical axis, see
text for explanations

Velocity drop in the ultrashort case shown in figure 10 is well described by a function
v = 4.05 exp(−0.63(t − 1.1)0.23) km/s where time t should be taken in ps. The subnanosecond
velocity trajectories obey the approximately same law but only after few tens of ps after their
maximum of velocity tmax−vel. Deceleration dependence on time is plotted in figure 11. There
is relatively slow acceleration in the subnanosecond case. The acceleration interval is lost for
the Rayleigh-Taylor (RT) amplification of perturbations of CB. Thus development of the RT
instability is significantly weaker in the subnanosecond case, compare the curves “gain USP”
and “gain subNS” in figure 11. The temporal interval of a few tens of ps is important for
development of the RT disturbances because during this interval the deceleration is huge, see
the curve “decel USP” in figure 11. These decelerations overcome values 1014 cm/s2 typical for
surface of a neutron star. Atomic decelerations in interatomic interactions are of the order of 1018

cm/s2. The curves “gain USP” and “gain subNS” in figure 11 corresponds to the wavelength 60
nm of a harmonic perturbation. They were calculated using linear RT theory including surface
tension and viscosity according to the method described in [10,11].

4. Strong heating, inertial geometrical confinement, and overcritical states

Gold is strongly heated at the end stage of absorption of a subnanosecond pulse, see figures 1 and
12. Simulations are done using equation of state for gold, water and glass taken from [16–20].
For water and glass the Hugoniot dependencies were used. They are obtained from shock wave
experiments analyzed in [19,20]. Thus for water and glass we use polytrophic dependencies. For
water they are given in figures 8, 9 and expression (12) in Ref. [11]. This is enough outside the
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Figure 12. Maximum heating after absorption of a subnanosecond pulse. We see that for all
three cases temperatures near CB are higher than critical temperature. Comp. also with figure
1

very thin layers of hot water and glass near the contact. Dynamically these thin layers negligibly
affect dynamics of deceleration of gold. Because the deceleration is defined by the bulk, shock
compressed mass of water and gold. We use heat conduction description for gold from [11, 34].
The description includes (a) calculated contribution from electron-electron collisions important
at high temperatures and (b) decrease of conductivity during melting. Critical parameters of
gold are 7.8 kK, 0.53 GPa, and 5.3 g/cm3 [16–20].

Heated gold is cooled due to heat conduction into deeper layers and thanks to adiabatic
cooling during expansion. Inertial confinement by rather dense dielectric limits a rate of
expansion and thus the rate of cooling. It takes approximately 0.2 ns to cool the CB below
critical temperature Tcr in the case with Fabs = 560 mJ/cm2. In the case with Fabs = 900
mJ/cm2 the time interval for such cooling is longer, see figures 13–15.

The temporal interval, when gold near a CB is in overcritical state, plays a special role in the
process of nanoparticles (NP) formation. See discussion in the next Chapter. Here we have to
discuss strong increase of temperature near the CB (see figures 12, 13) in the case of the most
powerful action (Fabs = 900 mJ/cm2) from the sequence of the considered cases. It is obvious
that temperature at the CB after absorption of a subnanosecond pulse TCB(t ≈ τL) increases as
energy Fabs increases while density ρCB drops down. How high is temperature TCB(t ≈ τL) at the
CB? From energy balance we have an estimate TCB(t ≈ τL) ∼ Fabs/d/c, where d ∼ 2

√
χAuτL,

c is heat capacity of gold per unit of volume. Our model of heat conduction [11, 34] describes
dependence of thermal diffusivity χCB on density. Values of χCB and c decreases as density
decreases. Thus temperature TCB(t ≈ τL) isn’t simply proportional to Fabs as it is in the case
with permanent values of χCB and c.

Namely nonlinear dependence of a function TCB(t ≈ τL) on Fabs causes appearance of the
overheated contact layer in figures 12 and 13, see also figure 15. In this layer temperature
increases 5-7 times above the average level. While density drops 5-7 times below the average
level, see figure 15. Thus pressure is approximately the same across the matter of glass near the
CB, in the overheated layer, and in the dense gold near this layer, see figure 14.
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Figure 13. Gradual cooling of gold (comp. with figure 12) as a result of thermal conduction
and work done for mechanical expansion of matter. When the transition from the overcritical
state to the two-phase states takes place(?) and how long gold near CB exists in the overcritical
state(?)—these questions are important, because diffusive mixing is strongly enhanced in the
overcritical states, thus more amount of gold is transferred into nanoparticles during cooling of a
mixture since a diffusive layer is thicker. Temperature jumps at the profiles T (x, t = 500 ps) are
connected with fragmentation and formation of a sequence of liquid layers, see figures 3, 5, and
7. Vapor layers in this sequence are much less conductive than liquid. Therefore temperature
becomes homogeneous inside the liquid layers and jump from the value for one layer to the value
of the neighbor layer

Transport properties of gold in the states with ρ ∼ 1 g/cm3 and T ∼ few eV are poorly
known at the present state of human knowledge. Thus we cannot pretend that our conduction
model [11,34] (the model gives strong decrease of thermal conductivity with decrease of density)
is very accurate at these hot states of intermediate density between condensed and gaseous
values. But we are sure that at least at the semi-quantitative level the model is true in these
states. Therefore phenomenon with the nonlinear overheating have to take place but may be
at slightly different energies Fabs. If we suppose absorption of gold at the level A = 0.3 than
incident intensity Iinc ∼ Fabs/A/τL is ∼ 1011 W/cm2, that is somewhere not far from the values
corresponding to optical breakdown of dielectrics. This understanding seems limits achievable
level of the highest temperatures TCB.

5. Disappearance of capillary barrier and strong enhancement of diffusion

As follows from figures 1, 12–15 the CB is above the critical point for gold for some temporal
interval. Critical point of water (220 bar, 647 K, 0.3068 g/cm3) is much lower than the critical
point of gold. Thus both liquids are in the overcritical states. Then they behave like the non-
ideal gases. Surface tension at the contact boundary (CB) between them becomes zero. While
diffusion coefficient increases. In condensed matter the diffusion process is slow because an atom
loses time doing many oscillations inside its potential well before it tranships to the neighbor
well.

We use molecular dynamics (MD) simulation with EAM (embedded atom method)
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Figure 14. Pressure profiles near the CB at the nanosecond time scale. We see that only in
the case with Fabs = 340 mJ/cm2 pressure drops below the critical value for Au. The vertical
straight lines 1, 2, and 3 designate current positions of the CB for the three cases considered.
Simulation parameters are the same as in figures 12 and 13. The instant of time is the same
as in figure 13. The CB separates dense (Au) and less dense (dielectrics) media in the cases 1
and 2; correspondence between the digits 1, 2, and 3 and values of Fabs is shown in the inset.
Therefore in these cases the ∇p has the kink at the CB. The layers of positive and negative
p (seen deeper to the right relative to the CB) of rather significant amplitudes (few GPa) are
caused by oscillations of the spallation plates seen in figures 3, 5, and 7

interatomic potential for gold to calculate saturation pressure (Figure 16), the boiling and
condensation curves (Figure 17), and surface tension at the boiling curve (Figure 18). We
modify our previous EAM potential for Au-Au interaction described in [39]. The modified
potential provides the correct dependence of surface tension coefficient on temperature shown in
figure 18 and gives correct dimer Au-Au binding energy. Mechanically both potentials are close
to each other (equilibrium density, compressibility, shock Hugoniot). Melting temperatures are
very near to the experimental value for both potentials. We refer to these EAM potentials as
old and new EAM potentials in figures 16 and 17 and below in the text.

Figure 16 presents the binodal curve at the T, p phase plane. We see that both EAM potentials
underestimate saturation pressure at high temperatures near the critical point relative to the
data from [16–20]. While critical temperature is or higher for the new EAM potential, or lower
for the old one. It should be said that the exact values of critical pressure and temperature of
gold still remains unknown. Thus in reality we cannot definitely conclude what set of data is
more close to the real gold.

Figure 17 shows the boiling and condensation curves at the density-temperature plane.
Equation of state (EoS) [16–20] and two EAM potentials are compared. We see that at the
ρ, T plane the new and old potentials limit the EoS data from above and from below.

Molecular dynamics (MD) simulation of atom diffusion in the hot binary mixture Au-water
was performed with using three different potentials describing interactions between atoms
Au-Au, water-water, and Au-water. The new EAM potential was used for describing of
Au-Au interactions. for which the EAM potential was developed in [11], see the data files
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Figure 15. Structure of the near CB layers. The CB expands more in dielectric at the same
instant of time as more energy Fabs is absorbed. Parameters of simulations are presented in
figures 12 and 13. We see that only in the strongest case Fabs = 900 mJ/cm2 the density of
gold at the CB remains below the critical density and thus at the gaseous side above the critical
point at the ρ, T phase diagram. While in the two other cases these densities are at the liquid
side of the diagram
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Figure 16. Saturation pressure psat(T ) curves for Au from the wide-range equation-of-state
(EoS) [16–20] and from MD/EAM simulations. The right end points of the curves correspond to
the critical points. It is difficult to define psat from MD/EAM at small pressures much smaller
than 1 GPa. Simulation errors in the MD/EAM approach also increase near the critical point
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Figure 17. The ρ, T plane of a phase diagram for Au. Comparison of the binodal curves from
MD/EAM and EoS. The 3 magenta rhombus shows places where diffusion coefficient in pure
Au and Au-wt mixture was evaluated, see table 1. MD/EAM reproduces accurately melting
temperature of Au

Table 1. Self-diffusion Au-Au coefficient DAu−Au in homogeneous hot temperature gold T = 10
kK in the overcritical states shown in figure 17 by the magenta rhombus. The last line gives the
diffusion coefficient DAu−wt of Au atom in the homogeneous Au-water mixture T = 10 kK with
atomic partial concentrations 50/50 and partial densities 4.1 and 0.4 g/cm3 of Au and water,
respectively. We use new EAM in calculations

ρ of Au [g/cm3] 4.1 8.2 16.4
DAu−Au [×10−3 cm2/s] 1.47 1 0.41
DAu−wt [×10−3 cm2/s] 1.13

on the project www.researchgate.net/project/Development-of-interatomic-EAM-potentials. It
provides the correct mechanical properties of liquid water including the density and sound speed
in ambient conditions, and shock Hugoniot as well.

Due to lack of information, the interaction of Au atom and water molecule is greatly simplified
to a pairwise potential between Au and “water” atoms using the van der Waals radii 0.166 nm
for Au and 0.152 nm for oxygen atom, and a strong repulsion ∼ r−11 is assumed. The usage
of larger van der Waals radius 0.19 nm of water for our “water” atom reduces the diffusion
coefficient of Au atoms in the simulated 50/50 binary mixture by about 10-20%; 50/50 is the
ratio of the numbers of atoms per unit of volume; partial densities are 4.1 and 0.4 g/cm3 for
Au and water, respectively. Results of MD simulations relating to calculations of diffusion
coefficient D in the overcritical states of gold and gold-water mixture are presented in table 1.
Corresponding MD simulations were done using new EAM potential. Positions of corresponding
points (where coefficient D was calculated) are marked as magenta rhombus in figure 17.
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Figure 18. Behavior of surface tension of gold σ(T ) along the boiling curve shown in figures 16
and 17. Black squares relate to the MD/EAM calculations done using the new EAM potential.
Calculation of σ(T ) by the old EAM is presented in figure 15 in paper [28]. The old EAM gives
approximately twice lower values of σ(T ). See discussion in [35] about evaporation and surface
tension. Green continues curve gives approximation σ = σ(T3)((1 − T/Tcr)/(1 − T3/Tcr))

5/4

from [36], see also [28]. Here T3 and Tcr are temperatures in the triple and critical points. The
PRL1995 and 2001 relates to the data from [37,38]. They cover only short temperature intervals

6. Cooling, condensation, and formation of nanoparticles

There is significant gold-water atomic inter-diffusion mixing process when matter near the CB
exist in the overcritical states; see figures 12–15 about duration of residence in the overcritical
states and figure 17 with table 1 about the enhanced value of diffusion coefficient D in these
states. Thus the jump like CB diffuses into a smearing layer. Thickness of this layer is
ldiff ∼ 2

√
D t. Taking durations t from few to few tens of nanoseconds we obtain values of

ldiff from few tens to ∼ 102 nm.
Hydrodynamic expansion causes cooling of mixture thanks to work done for expansion.

Gradually temperature drops below the critical value for gold. Then condensation into clusters
of Au atoms begins. These clusters are in Brownian movement, sometimes meet each other
and stick together. Atoms surrounding a cluster condensate to a cluster and evaporate from it,
thus mass and energy exchange between atoms and a cluster takes place. Our MD simulations
presented below show that temperatures of atoms and clusters are approximately the same.
Thus collisional removal of the positive energy excess from growing in size (and hence heating)
cluster is fast enough to support equality of temperatures.

The hydrodynamic expansion rate is defined by the gradient of velocity dv/dx near the CB.
At the nanosecond time scale this gradient is of the order of dv/dx|CB ∼ 108 1/s, see figures 2,
4, and 6. Therefore expansion velocity of the CB diffuse layer dv/dx|CB ∗ ldiff is a few meters
per second.

Following these conditions we run several MD simulations to estimate temporal range of
nucleation and growth of nanoparticles (NP) as pure gold or the 50/50 mixture (in concentrations
of Au and water) intersect a condensation curve shown in figure 17. Calculations are done using
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Figure 19. Wide range of a phase diagram showing the small piece of the adiabatic curve near
the point where the curve passes through the binodal. The EoS and the old EAM binodals
are shown. They are close to each other near this particular intersection points. MD/EAM
simulation are done using the old EAM potential

Table 2. The lines in the table present the list of the points at the adiabatic curve for pure
Au in figure 19 and 20. In figure 20 three last of these points (the three bottom lines here) are
marked by the empty squares. These three points correspond to the digits 20.7, 27.3, and 44.2
ns at the maps of potential energy shown in figure 21

instant [ns] T [kK] p [bar] ρ [g/cm3]
0 6.11 436 0.518

20.7 5.32 194 0.254
27.3 5.24 164 0.219
44.2 5.13 126 0.162

the old EAM potential. Condensation starts with some delay in time after the intersection.
Of course, this delay depends on the rate of expansion—in the case of very slow expansion the
condensation begins very close to the intersection point.

Figures 19 and 20 show how the adiabatic curves kink as they pass into the two-phase region.
The kink corresponds to the transition from the fast temperature drop with expansion to the
slow temperature drop. The fast drop (rather large effective adiabatic index γ) relates to the
one-pase behavior (Au is in a gas state). The slow drop (decrease of γ) begins when liquid
component appears in a two-phase vapor-liquid mixture. Release of evaporation energy through
condensation during volume expansion reduces the rate of temperature decrease.

Figure 19 presents global view of the EoS and old EAM boiling curves and the MD simulated
adiabatic curve crossing the boiling curve. The MD simulation is intended for definition of the
transition piece from the one-phase to the two-phase behavior along the adiabatic expansion
process for our particular conditions: velocity gradient ∼ 108 1/s and the diffusion thickness of
the order of few tens of nm. We are interested to know how long this transition lasts and how
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Figure 20. The detailed view of the intersection region taken from previous figure 19. Two
adiabatic curves are presented. One corresponds to pure Au, while another one—to 50/50
mixture of Au and water (in numbers of atoms per unit of volume). The axis of density gives a
sum of Au and water densities in the case of a mixture. The condensation curve relates to the
case of pure Au, see also figures 17 and 19. It is difficult to find position of the gold condensation
curve in case of mixture. It should differ from the binodal for pure gold. Approximately the
condensation curve for the 50/50 mixture is located slightly above the point where the 50/50
adiabatic curve has the kink. Snapshots of the process is demonstrated in figures 21 and 22
below

Table 3. The three lines in the table present the list of the points at the adiabatic curve for
Au-water mixture in figure 20. In figure 20 the two last of these points (the two bottom lines)
are marked by the filled green squares. These points correspond to the digits 6 and 25.7 ns at
the maps of potential energy shown in figure 22. Here the last two columns give total pressure
and total density of a mixture (a sum of Au and water contributions)

instant [ns] T [kK] p [bar] ρ [g/cm3]
0 6.10 936 0.516
6 5.67 643 0.397

25.7 5.21 324 0.226

large nanoparticles are at the end of our temporal range. The MD simulation is rather difficult
because duration is long (tens of ns) and system should consists from large number of atoms
∼ 106. Therefore we limit our self to a narrow time interval just before the intersection (omitting
trivial one-phase piece of the gaseous adiabatic curve) and we follow the process during a time
scale typical for our problem. This explains why the piece of the adiabatic curve is short in
figure 19 relative to the field shown.

Figure 20 demonstrates shape of the two transient kinks at the two adiabatic curves: one for
pure Au and another for a mixture Au-wt. The small pieces of the adiabatic curves shown in
figure 20 belong to the local vicinities of the points where these two adiabatic curves for pure and
mixed Au cross the curves of thermodynamic equilibrium for pure and mixed Au, compare with
figure 19. MD simulations with old EAM interatomic potential were used to obtain these two



Figure 21. The course of condensation process during expansion of initially gaseous Au.
Appearance of the viable clusters begins not immediately as a system of Au atoms crosses an
equilibrium curve, see figure 20. Let’s mention that unstable (appearing/disappearing) clusters
may exist even in gaseous state. They contribute to decrease of pressure relative to pressure of
ideal gas with same temperature and atom number density. The three frames shown correspond
to the instants listed in table 2 and marked by empty squares in figure 20. The x, y plane is
demonstrated. Horizontal direction of expansion is x. Its expansion velocity is 2 m/s. Vertical
size along y-axis is 200 nm

adiabatic curves. The simulation boxes for the both cases have fixed in time periodic boundary
conditions at the lateral walls, that is in the y, z directions. Lateral dimensions y×z are 200×100
nm. The moving walls are imposed in the x direction. There are reflecting potentials connected
with these x-walls. They return the Au or Au and water atoms colliding the x-wall back into a
box. Reflection from the expanding walls extracts small (velocity of expansion is much less than
thermal velocity) part of kinetic energy of colliding atoms thus adiabatically cooling a whole
system in the box.

Initial densities and temperatures are given in figure 20 and tables 2 and 3. Initial
distance between the x-walls is ∆x0 = 40 nm. This starting distance is the same in pure
Au and the mixture cases. Expansion velocity vx|expan = d∆x/dt is 2 m/s. It is also the
same in the both case. Distance between the x-walls grows with time and density decreases
ρ = ρ0∆x0/(∆x0 + vx|expan t). This is a model of spatial expansion of pure gold or diffusion
mixture in real conditions during expansion and cooling.

Figures 21 and 22 present pictures of evolutions in direction of condensation of pure Au
(Figure 21) and mixed systems, respectively. Figures 21 and 22 show how nanoparticles nucleate
and grow. The figures correspond to the view along the z-axis. The simulation box is 100 nm
long in the z-direction. Figures 21 and 22 are composed from the x, y set of the individual pixels.
Every pixel contains information about potential energy averaged along the z-direction.

More light green pixel marks position where potential energy is deeper. The light green spots



Figure 22. Condensation into gold nanoparticles as Au-water mixture at the ρ, T phase plane
decreases below the equilibrium curve for gold in mixture. The left and right frames relate to
the two green squares in figure 20, see also table 3. We add the intermediate frame t = 12
ns to better show the process of nanoparticles (NPs) formation and growth. Sizes of NPs may
be estimated by direct measuring, compare with the vertical dimension (this is the y axis) of
the computational box equal to 200 nm. Adiabatic expansion proceeds along the horizontal
direction (this is the x axis) expanding with velocity 2 m/s

are the nanoparticles (NP); indeed, the stuck together atoms of gold have lower potential energy
than individual atoms. Their sizes are of the order of ten nanometers at the final stages in both
cases of pure Au (Figure 21) or Au-water mixture 22). Atoms sticking together into NP have
profit in their interaction energy. Sticking of part of Au atoms in the two-phase system does
deeper potential energy of the whole system (averaging along x, y, z-directions). This is shown
in figure 20 by the dependence relating to potential energy. Figures 21 and 22 show the same
but with averaging only along the z-direction. Temperatures in figures 21 and 22 are higher
than melting temperature of gold. Thus NP remains in liquid states in the temporal range
considered.
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Figure 23. The upper panel presents the snapshot of atomic number density map of Au (yellow
colors) moving to the left side with velocity ≈ 700 m/s at this instant; degrees of yellow are
proportional to local atomic density presented in the bottom panel. Au displaces water which
resists to displacement and thus causes deceleration of Au. Deceleration and density difference
are the reasons that result in appearance of Rayleigh-Taylor instability (RTI) evidently seen
[8, 9, 11] at the lower values of Fabs. Surface tension imposes clear capillary spatial scale for the
growing perturbations [8, 9, 11]. But here at enhanced laser action the diffusion is stronger and
it suppresses development of RTI while the capillary scale shrinks to zero. The bottom panel
gives the number densities instant profiles of Au and water atoms corresponding to the instant
shown in the upper panel. The map from the upper panel is integrated in the lateral dimensions
for Au and water separately to obtain these profiles.

7. Molecular dynamics simulation of ablation in water

From the sequence of three shots compared in figures 9, 10 and 12-15 we see that increase of
absorbed energy Fabs causes serious consequences. The main feature is that with this increase
a metal near a CB transfers from undercritical to overcritical conditions and remains their for



rather long time. Undercritical (condensed) and overcritical (uncondensed, gaseous) conditions
differ qualitatively. In the undercritical case (relatively small Fabs) the liquid gold contacts with
liquid; our fluences are above melting threshold for Au. Thus to penetrate into liquid and to
form NPs the Au atoms have to overcome surface barrier through evaporation/dissolution (the
first step) and after that they diffusively drift out from a CB (the second step). At the last step
the expansion and cooling lead to condensation and formation of NPs, see figures 20 (adiabatic
curve in case of mixture, intersection of the condensation curve) and 22 (condensation in case
of mixture).

In the overcritical states the first step disappears together with surface tension. This is very
important. Indeed, low values of saturated pressures of evaporated/dissolved Au atoms outside
the boundary of a continuous condensed phase (outside the CB) strongly limits amount of Au
atoms in a diffusion layer and thus limits amount of NPs. In the overcritical states only the
second and third steps are present. This enhances diffusion—now diffusion starts not from
evaporated/dissolved atomic number density of Au near the CB but from much larger value of
atomic number density directly in the continuous phase (atomically sharp boundary disappears
together with surface tension, see figure 18).

We perform a large scale MD simulation to follow ablation of gold into water at absorbed
energy Fabs larger than in the case previously considered in paper [11]. Here in figure 23
rather late instant from MD simulation with large Fabs is presented. We see that Au-water
interpenetration significantly overcomes the estimate ldiff = 2

√
D t = 20 nm for D = 10−3 cm2/s

and t = 1 ns. May be enhancement of interpenetration is due to presence of some embryos of
Rayleigh-Taylor instability. Indeed, it is known that diffusion is a laminar like process which
produces very flat atomically mixed layer; diffusion smooths away lateral roughness. But in figure
23 we see significant inhomogeneities in the direction transverse to the direction of longitudinal
expansion.

8. Conclusion

Above ablation of gold into transparent media is analyzed. Initial stages of formation of
nanoparticles (NP) are considered. These stages relate to tens and hundreds of nanoseconds (see
Section 6) well before bubble dynamics comes into play. All thermodynamical (with first order
phase transitions) and hydrodynamical aspects have to be included to come to understanding
of appearance of primary NPs. It is found that
* Deceleration of the contact boundary (CB) at the nanosecond time scale is approximately
exponential vCB ∝ exp(−t/tdec) with the e-folding time tdec of the order of 0.5-1 ns. This
law describes deceleration in the 1-0.1 km/s range of velocities vCB after ultrashort and
subnanosecond pulses.
* Maximum shift of the CB from its initial position is rather limited and is of the order of
micron.
* Temperature TCB of gold at the CB nonlinearly depends on absorbed energy Fabs. Temperature
TCB strongly increases for energies Fabs ∼ 1 J/cm2 up to values ∼ 105 K for subnanosecond
pulses. These values are much above critical temperature. While density of gold ρCB decreases
down to values ∼ 1 g/cm3.
* Temperature TCB of gold at the CB nonlinearly depends on absorbed energy Fabs. Temperature
TCB strongly increases for energies Fabs ∼ 1 J/cm2 up to values ∼ 105 K for subnanosecond
pulses. These values are much above critical temperature. While density of gold ρCB decreases
down to values ∼ 1 g/cm3.
* Ablation motion triggered by a subnanosecond pulse is order of magnitude more stable against
Rayleigh-Taylor instability (RTI) in comparison with an ultrashort action, see figure 11. This is
simply caused by the shortening of deceleration stage because more than a half of the heating
pulse is spent to accelerate the CB.



* Another important reason to limit the RTI perturbations growth is connected with high
temperatures, decrease of the density ratio at the CB, and enhancement of diffusion. Enhanced
diffusion is a powerful stabilizer of RTI. Diffusive smearing grows as l ∝ t1/2 while for RTI in the
case with permanent deceleration the law of growth is l ∝ t2. Thus diffusion always dominates
at the early stages while the RTI wins this competition later in time. But in laser ablation
the deceleration quickly decays in time. Thus there is only limited interval of times when
perturbations can develop thanks to RTI. In this situation the diffusion process suppresses RTI.
Then RTI is removed from the process of fabrication of NPs at the capillary scale. Appearance
of NPs of the capillary scale was observed in simulations [8–11].
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