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Abstract. Laser exposure at a sufficient intensity creates a shock wave (SW), propagating in
the irradiated target. The process is used in many technological applications. As a result of
femtosecond exposure, a warmed up layer with a thickness of dT ∼ 0.1 µm occurs. The radius of
the heating spot RL varies from values of the order of a micron (focusing on the diffraction limit)
up to tens or hundreds of microns depending on the experiment. As you can see, RL ≫ dT,
therefore one-dimensional motion with a plane surface is generated. The quasi-plane SW stage
ends when the SW moves away from the target surface to a depth of about RL. Then the stage
of quasi-hemispherical propagation begins. The paper analyzes the transition from plane to
hemispherical SW. The motion of the “wings” of a hemispherical wave on the target surface
bordering on a gas or vacuum is investigated. Theoretical estimates and numerical simulation
results are presented. Analysis of the movement of the “wings” on the surface is important for
experimental diagnostics of phenomena inside the target.

1. Introduction

Lasers are used as a tool in many industrial applications, such as:

• Strengthening of materials by passing a shock wave (SW) [1–6] known as laser shock peening
(LSP), increased resistance to corrosion and wear due to fatigue.

• The formation of colloids of nanoparticles by means of laser ablation in liquid (LAL). [7–22].
We emphasize that LSP and LAL are two sides of the same coin. In case of LSP, they are
interested in SW and what is happening inside the target, and in case of LAL, they analyze
the substance ejected from the target. In both cases, the effect on the target through a
transparent liquid is usually considered.

• Additive technologies [23,24].

• Structuring of the surface [18, 25–32]. There are modes of influence, after which there are
chaotic structures on the surface [25, 26, 28], and modes, in which periodic structures are
formed [30]—laser induced periodic surface structures (LIPSS).

Other two important areas of laser-generated SW application first of all, they are connected
with fundamental research of equations of state (EOS) of substances in wide areas of their



phase diagram [33–35]; these areas also include extreme states of matter. Secondly, strength
of condensed media is studied using lasers and SW [34, 36–39]. Previously for LSP, LAL,
and thermodynamic equations of state investigation [33, 35] nanosecond pulses were used. For
sintering or melting powders [23,24] or cutting metals [40,41] continuous lasers [42] are used.

Situation in industry and research has changed dramatically with the advent of ultra short
pulse lasers; Gerard Moore and Donna Strickland were awarded Nobel prize in 2018 for creating
such light sources. The fact is that the physics of the interaction of laser radiation with
matter has changed fundamentally when pulse is shortened by 3–5 orders of magnitude from
nanoseconds to tens of femtoseconds and units of picoseconds. There are three qualitative factors
that sharply distinguish ablation using ultrashort pulse lasers from that in nanosecond case.

First, separation of the electron temperature from the phonon temperature becomes
significant. The fact is that the laser transmits energy to electrons, and the transfer of absorbed
energy to lattice is relatively slow. The weak thermal coupling of electrons and ions is due to
the huge difference in mass. These circumstances were taken into account in the pioneering
work of 1974 Anisimov with co-authors [43]. Work [43], which laid the Foundation of the two-
temperature model, is for many years ahead of the work of Moore and Strickland on femtosecond
lasers.

The second and third circumstances are related to, that the laser energy release begins and
ends inside the condensed phase. That is, the heating layer with a thickness of dT does not have
time to expand (unload) hydrodynamically before the end of the heating process. As a result,
pressure in the dT-layer increases dramatically [44].

According to d’Alembert solution of linear acoustics, from the dT-layer of high pressure two
acoustic waves begin their propagation, which “take out” high pressure from the dT-layer. One of
these waves runs into the target, and the other—to the surface of the target [44]. This situation is
qualitatively different in hydrodynamic terms from the situation in case of nanosecond pulses, see
[5, 45]. In case of d’Alembert solution, acoustic disturbances run through the condensed phase.
Whereas with a nanosecond impact, there is a “piston”, which separates hot gas (plasma) phase
and condensed phase. Vapor pressure of the vaporized substance or pressure of the plasma
corona forces the piston to press on the condensed phase. Characteristics emitted by the piston
go far into thickness of the target, forming extended compression wave. Whereas for femtosecond
exposure, wave thickness is small: this thickness is of the order of dT.

The second circumstance of three that distinguish femtosecond (fs-) and nanosecond (ns-)
effects is associated with a simple Riemann wave running to the boundary of the target with
vacuum. This wave, reflecting from the vacuum boundary, changes the property—namely, from
compression wave p > 0 turns into stretching wave p < 0. Stretching (at an amplitude higher
than the ablation threshold) results in separation of the condensed phase layer from the target.
That is, instead of evaporation, there is a separation of a macroscopic piece of condensed phase.

Let us explain that in ns-ablation, entrainment (ablation) of a substance occurs by
transforming the substance from a condensed state to gas (plasma) state. So, fs-ablation has
a threshold and carries away a layer (shell) of condensed matter. Existence of a flying shell
was discovered in works [46, 47]. Shell concept explains what observations of Newton’s rings
multiplying over time are related to [46,47].

The third circumstance is connected with simple Riemann wave running into thickness of
the target. This is compression wave. At initial stages, its thickness is about dT. Due to non-
linearity, after passing a certain distance of the run, the wave overturns—formation of triangular
wave begins. The shorter the distance, the higher wave amplitude at the initial stage is. Then
the triangular SW widens, and its amplitude decreases approximately according to law

p ∝ u ∝ 1/
√
t ∝ 1/

√
z (1)

(see [48, chapter 10]) as long as the SW is quasi-plane; the front of the quasi-plane SW is shown
by curve 1 in figure 1. Such a dependence takes place due to non-linearity of inertial term u∇u



and to dependence of sound speed on pressure. In (1), value z ≈ cst is the distance traveled by
the SW during t. It is the study of evolution of this kind of shock waves (taking into account
the geometry) that is a subject of this paper.

What is new in this paper is related to analysis of geometry effects. Irradiation of the target
with a laser beam with a diameter of 2RL is shown in figure 1.

In the process of evolution, there is a transition from quasi-plane (curve 1 in figure 1) to
quasi-hemispherical (curve 2 in figure 1) distribution mode.

Hemispherical front 2 in figure 1 is not an exact hemisphere; this would be asymptotic for
|zc| ≫ RL, if boundary with vacuum is replaced by absolutely rigid (non-deformable) plane. The
shape of SW 2 is affected by presence of a close boundary with vacuum. One the consequences of
this is presence of a circle “w”, where oblique SW comes to surface, see figure 1. After the point
“w”, a Prandtl–Mayer flow type occurs, in which substance not only moves in the direction of
SW, but also begins to expand in the direction of vacuum (rotation of the flow).

In addition to two acoustic waves (modes), an entropy mode is created when the laser is
applied with formation of a hot dT-layer. Acoustic waves propagate relative to the substance.
Their speed is high, equal to speed of sound cs. Entropy mode moves slowly with matter. The
values of high entropy are “frozen” in the material of the dT-layer. At acoustic time scale
ts = dT/cs d’Alembert waves leave the hot dT-layer, which remains as a high-entropy trace of
laser action.

An interesting question is about a complex non-dimensional flow in which the moving
substance of the entropy trace is adjacent to relatively cold substance left by the diverging
SW; see main text for this.

We will be interested in both case of cylindrical lens and case of spherical lens focusing light
beam 2RL on target surface, see figure 1. Cylindrical lens (its axis is perpendicular to the plane
of figure 1) corresponds to plane 2D geometry. In this geometry, current lines of motion are
situated in the plane of figure 1.

At |zc| > RL, due to divergence, the SW amplitude decreases faster than according to law
(1).

For quasi-flat propagation of SW, pressure decreases according to law (1), This degree
estimate is valid up to pressures of the order B ∼ 1 Mbar, where B is volume compression
module. At ultrahigh pressures p ≫ B, the situation is similar to one that occurs in short
impact problem [49]. SW attenuation increases when switching to a short shock: instead of 1/2
degree (non-linearity and dispersion), degrees are obtained in a range from 2/3 to 1, depending
on the adiabatic index. The range boundaries are related to laws of conservation of momentum
(value 1) and energy (value 2/3) [49].

In future, this study will allow for observations from above for the side SW “ w ” in figure
1 judge what is happening in target thickness at depths of the order of zc; this is important for
understanding LSP processes.

Structure of the article is as follows. First, we give estimates of SW attenuation at propagation
distances in metal volume less than zc < RL and greater than zc > RL of the beam radius. Next,
we give estimates of pressures in typical experiments. Then we describe the results of numerical
simulation.

2. Changing attenuation mode at depth of the order of the laser beam radius

Change in the attenuation mode is caused by change in the propagation geometry of the SW.
This is shown in figure 1. Corresponding change in the dependence of the amplitude decrease
on time or on the path of propagation of the head wave is shown schematically in figure 2. As
mentioned above, SW is formed as a result of overturning one of two d’Alembert waves after
leaving warmed up dT-layer.



Let initial amplitude of the SW (i.e. in the area of z ≈ dT) be pT. There are two propagation
modes: flat one-dimensional (1D) and divergent two- or three-dimensional (2D, 3D). And there
are two ranges of amplitudes: less and more than volume module B ∼ 1 Mbar.

Divergent mode follows flat mode in time, see figures 1 and 2. SW divergence occurs in
two geometries associated with illumination by cylindrical (2D geometry x, z) and spherical (3D
geometry x, y, z) lenses, see figure 1 and chapter 1. On a section of quasi-flat SW dT < z < RL,
pressure decreases approximately according to law

p ∝ pT(dT/z)
β1 ∝ pT(ts/t)

γ1 , (2)

where ts = dT/cs is acoustic time scale for dT-layer. Numbers “1” for β and γ indexes mean
that these indexes belong to one-dimensional propagation mode z ≪ RL.

When writing (2), we assume that initial amplitude of pT is not too small compared to value
of the volume module B ∼ 100 GPa. Indeed, in the experiments that will be discussed below,
minimum values of pT are of the order of 10 GPA or more. Accordingly, rollover and formation
of triangular SW occurs at propagation distances comparable to dT scale.

If amplitudes of pT are very small, first, the wave propagates over long distances in linear
mode, i.e. without tipping over (respectively, without forming a jump). And, secondly, in terms
of amplitude, we begin to get out of plastic approximation. In this case, it is necessary to take
into account elastic characteristics of the medium and elastic-plastic effects. Typical values of
elasticity thresholds pel for metals are of the order of fractions of GPa [34].

On the diverging section z > RL we have

p ∝ p∗(RL/z)
β2.3 ∝ p∗(tL/t)

γ2.3 , (3)

where tL ≈ RL/cs, β2 refers to 2D case, and β3 refers to 3D case; similarly for γ. Pressure
p∗ ∝ pT(dT/RL)

β1 (3) is pressure on the geometry change crossover at z ≈ RL.

3. Values of SW attenuation indices

As mentioned above, values of the indices (2), (3) are determined by which region in terms of
amplitude and geometry we fall into. Schematically, these areas are presented in table 1.

Dimension of the space is N, where N = 1, 2, 3 in plane (1D), cylindrical (2D), and spherical
(3D) cases, respectively. There are four indexes α, β, γ, and n.

The index α sets the trajectory of the object: z ∝ tα. The indices β and γ are defined by
formulas (2), (3). The n indicator determines how quickly SW weakens as mass of M area
behind the SW front increases:

p ∝ 1/Mn ∝ 1/zN n. (4)

3.1. Weak and moderate amplitudes

Consider compressions that are less than B—the average column in table 1. Value B plays the
same role as background or undisturbed pressure p0 in problems of linear and weakly nonlinear
acoustics in gases. Thus, gas acoustics is related to acoustics in condensed media.

Gas dynamics equations can be decomposed by perturbation amplitude p = p0 +(δp), where
(δp) ≪ p0. In a cohesive medium (condensed medium), condition of small amplitude has the
following form:

(δp) ≪ B. (5)

In this case, value of p0 in condensed phase can be arbitrary, usually p0 = 0. In case of the first
order of amplitude (δp) we get wave equation (δp)tt − c2s ∆(δp) = 0. Laplacian ∆ is equal to

1

rN−1

∂

∂r

(

rN−1 ∂

∂r

)

(6)



for N = 2 (cylindrical case) and 3 (spherical case). For N = 2, the variable r in (6) is cylindrical
radius. In spherical geometry we have

∆ = r−1∂2
r (r (δp)). (7)

In linear case, α = 1, since the wave propagation speed is equal to undisturbed speed of sound.
Then indexes in formulas (2), (3) are equal to each other

βlin
i = γlini , i = 1, 2, 3. (8)

Amplitude of the jump decreases in accordance with the index βlin. Index values are shown
in table 2. How these values are obtained is described in [48, chapter 8]. In spherical case, this
behavior is related to representation of the Laplacian as (7).

The wave produced by heating with ultrashort laser pulse consists of compression section
p > 0 and stretch section p < 0. Now we are talking about wave in 1D geometry—this is curve
1 in figure 1. Appearance of a stretch section is due to the fact that layer of high-pressure
stationary matter produces two acoustic waves. The one that runs to border with vacuum
changes the sign of pressure (becomes stretching) after reflection from the border.

There is a remarkable fact highlighted in the book [48, chapter 8]. Linear acoustic wave
running from center of symmetry in N = 2 or 3 geometry must have a stretch section if
compression section extends ahead. This behavior is due to reflection from center of symmetry;
not to reflection from boundary with vacuum, as in 1D case.

Moreover, in case of 2D, stretch section does not have last characteristic (as in 1D and 3D)—
in 2D, this section continues to the center r = 0, see [48, chapter 8]. In our problems, wave
passes from flat (curve 1) to radially divergent (curve 2) propagation mode, see figure 1. In
this case, part with the stretch is inherited from 1D flow. But spatial divergence at zc > RL

transforms this part in its own way.

3.2. Weakly linear mode

Linear case is considered in subsection 3.1 above. Let us proceed to weakly linear case.
A deep study of acoustic problems with weak nonlinearity was performed by L D Landau

during the Second World War years [48]. The work was related to the determination of laws of
attenuation of hydrocarbons generated by the explosion or flight of a hypersonic vehicle. With
weak non-linearity, it is still assumed that α ≈ 1 and equalities (8) are approximately preserved.

The indexes calculated in the book [48, chapter 10] are shown in table 3. Adding the value ε
at N = 3 means that the jump amplitude changes according to law p ∝ 1/(zc ln(zc/a)), where
the constant a has length dimension. Recall that in linear case for N = 3, attenuation occurs
according to law p ∝ 1/zc, see table 2.

Comparing tables 2 and 3, we see that due to non-linearity, the attenuation is faster. The β
indexes increase by 1/2, 1/4, and ε when N = 1, 2 and 3, respectively. The increase in indices
is caused by the broadening of the triangular area. If the area under the triangular wave is
preserved, this broadening leads to a decrease in the amplitude of the jump.

In [48, chapter 10], it is indicated that a structure of two jumps is formed when an acoustic
disturbance is emitted from the center of symmetry of a cylinder or sphere. In this case, the
first jump is normal. It is formed, as mentioned above, when the compression wave overturns.
In fact, the second jump is also natural. The second jump is formed inside the stretch wave.
This is due to the difference in the speeds of the characteristic at the maximum |p < 0| of the
stretch and the characteristics following it.

There is a focus and intersection of characteristics on the plane z, t. Note that in our problems
in flat (1D) geometry, the situation is similar. Because of focusing in two places, a structure of
two parts is also formed. In this case, the first line runs before the compression wave, and the
second closes the stretch section [50,51].



3.3. Strong waves

Consider the right column of table 1. It corresponds to strong SW, the amplitude of which
significantly exceeds the module B, compare with (5). In such a situation, it is not necessary to
consider the SW either weakly or moderately nonlinear. At the same time, the speed is żc (see
figure 1) significantly exceeds the unperturbed speed of sound. In addition, the Mach number
for the speed żc changes with a decrease in the SW amplitude. Accordingly, the relation α = 1
and formula (8) are not applicable.

In a highly nonlinear wave, linear acoustics ratio does not work, linking local values of velocity
and pressure perturbations via acoustic impedance:

p = Zu. (9)

Pressure beyond the order of the velocity head

p ∼ ρ0u
2, u ∼ żc. (10)

For an approximate description of the situation with a strong SW on the border with vacuum,
the classics of natural science developed an approach called in the literature “the short-impact
problem” [49]. Here, “short” means that the SW is observed at times that are much longer than
the duration of the “impact”. The word “impact” is used in the sense that it is strong, distributed
in the limit compression mode. In this mode, in ideal gas, the compression is (κ + 1)/(κ − 1),
where κ is the adiabatic index. This approximate description is suitable for case of a strong
femtosecond laser pulse—the right column of table 1.

On a short hit, the indexes α, β, γ, n are linked. It is enough to set one of them to determine
the rest:

β = N n, n = 2
1− α

N α
, γ = αβ. (11)

The relations (11) follow from the definitions (2), (3), (4), estimates (10), and similarity
relations żc ∼ zc/t. The short-impact problem is solved in the ideal gas approximation with the
adiabata indicator κ. The book [49] shows the results of index calculations of α, β, γ, n (11)
in geometry with N = 1 for three gas values of the indicator κ = 1.1, 7/5, 5/3 and one value,
corresponding to the condensed phase κ = 2.8; in this case, the Gruneisen parameter Γ = κ− 1
is close to 2. According to [49] for N = 1, κ = 2.8, the index values α, β, γ, n (11) are equal to

α = 0.656, β = 1.045, γ = 0.686, n = β = 1.045. (12)

Important is the relationship between the problems of a short impact and a strong Sedov
explosion. For a short impact, the surface z = 0 in figure 1 is a free surface (boundary with
vacuum). In a strong explosion, the z = 0 boundary is an absolutely rigid plane. Indexes α, β,
γ, n in case of a strong explosion are simple (self-similarity of the first kind):

α =
2

2 +N
, β = N, γ =

2N

2 +N
, n = 1. (13)

We remind you that these indexes determine the attenuation of SW during its propagation
(2), (3). In (13), the value N = 1, 2, 3 is equal to the dimension of the space in which the SW
runs. From formulas β = N,n = 1, it follows that at a fixed time with a strong explosion of
pressure of the same order over the entire volume covered by the SW at this time.

Comparing (12) and (13), we see that for N = 1 and κ = 2.8, the solutions for a short strike
and a strong explosion are close: the indexes of α differ by 1.6%, (2/3-0.656)/(2/3)=0.016, the
difference between the n indices is 4.5%.

The book [49] presents approximate calculations of the short-stroke problem at N = 2 and
3. It follows that:



• Solutions to the problems of short impact and strong explosion in a condensed medium
Γ ≈ 2 differ little for all three values of N. with a short impact, the SW attenuates only
slightly faster than with a strong explosion.

• Only a small fraction (percent) of the mass covered by the SW flies out of the plane z = 0
in figure 1—therefore, the mass of the laser torch is small.

• At long times, the distance zc is significantly greater than the distance w to the center on
the plane z = 0 in figure 1.

• The flow is rotated at a distance of zrevrs ≈ 0.5zc from the point zc vertically x = 0, y = 0 in
case of N = 1 in figure 1. At the point of rotation, the z component of the velocity changes
its sign: at the segment zc < z < zrevrs, this component is directed towards the SW, and at
z > zrevrs—towards vacuum. For N = 2 and 3, the point zrevrs in figure 1 is located below
(zret ≈ (0.7–0.8)rc), than in case of N = 1.

Degrees of β in the short-stroke problem (right line of table 1) are shown in table 4.
Comparing table 4 with table 3, we see that strong nonlinearity significantly increases the rate
of SW attenuation. In Sedov case (13) we have β = N.

4. Experimental situation

The research presented in this paper is conducted in the interests of studying the physics of laser
hardening of metals. Different laser systems are used to generate laser shock waves. Their main
difference is the duration of the pulse τL. In addition, the energy of the impact is important.
Our work deals with ultrashort laser pulses. The term “ultrashort” means that the duration of
the laser pulse τL is less than the acoustic time scale. This scale is equal to ts = dT/cs, where
dT is the thickness of the warmed up layer, cs is the speed of sound.

Calculations of the action of a nanosecond laser pulse are described in the works [20,52,53];
previous literature is also discussed there.

Pressure created by the laser pulse varies over time from the maximum value to small
values related to pressure before the laser action begins. The maximum pressures in case of an
ultrashort pulse are much higher than those that occur during nanosecond impacts at comparable
absorbed energies Fabs. When the intensity absorbed by the target is of the order of 1 GW/cm2

maximum pressure for nanosecond exposure in water of the order of 1 GPa [20,52,53].
In this paper, we consider the pressure fields created by an ultrashort pulse, since it is with

high pressures that the processes of forceful change in the grain structure of a polycrystalline
target material—the grinding of crystallites—are associated.

In case of an ultra-short pulse, there is no need to use a layer of water to amplify the
mechanical pulse transmitted to the target. New femtosecond laser hardening technologies [4,6]
are associated with understanding this circumstance. Accordingly, there are no very significant
restrictions on the energy of laser exposure due to nonlinear processes in the liquid and with
optical breakdown of the liquid [20,54,55].

Power and energy are widely spread femtosecond laser systems are the units of millijoules,
respectively, dozens of gigawatt. Therefore, when focusing into a spot with a diameter of 50 µm,
the incident fluence Finc is easily adjusted to the values ∼ 10–100 J/cm2. When focusing into a
spot with a diameter of 5 µm, the values of Finc increase by two more orders of magnitude.

We will focus on experiments [56, 57], in which the laser pulse energy was of the order of a
microjoule. In this case, the irradiation spots were near the diffraction limit of focus, i.e. they
were several microns. Then the falling fluence Finc reached values of the order of 10 J/cm2.

Of course, for our calculations, the values of the absorbed fluence are important Fabs =
(1−R)Finc = AFinc, where R and A are the reflection and absorption coefficients. The coefficient
A depends on the metal and the wavelength of the incident radiation. There are cases with high
and moderate reflection coefficients. With a good reflection, the A coefficient is of the order of



percent. When using the second harmonics of systems on titanium-sapphire, chrome-fosterite,
or when using the second harmonic of the ytterbium fiber laser [57], the a coefficient takes
moderate values of the order of 0.2–0.7, even in case of well-reflecting metals.

The values of the coefficients R and A in linear modes of interaction of a monochromatic
electromagnetic wave with a substance were discussed above. These values for a clean, well-
polished surface are given in [58–60].

In case of femtosecond pulses with the energy we are considering, a strong heating of the
electronic subsystem occurs. As a result, the values of R change [61]. These changes are
especially significant in case of high values of the reflection coefficient R.

Indeed, the effects (heating, pressure amplitude) are related to the absorbed energy. And
this energy varies from a value of the order of 0.01 from the incident energy to a value ten
times greater when the electronic subsystem is strongly excited. Curiously, in case when the
coefficient A is not small, say A ≈ 0.5, the coefficient A even decreases slightly when the
electronic subsystem is excited. However, this effect does not play the decisive role as in case of
well-reflecting metals.

So, we will focus on the laser pulse energy of the order of microjoules, the spot diameters of
the order of 3–6 µm, and the incident energy in the tens of J/cm2. The other typical parameters
are: the second harmonic of the laser radiation, the coefficient A of the order of 0.3. Then the
maximum absorbed energy will be of the order of units of J/cm2. For gold with a characteristic
warm-up depth of a femtosecond pulse dT ∼ 100 nm, the absorption of this amount of energy
creates maximum pressures of several Mbar.

5. Initial conditions and geometry of hydrodynamic calculation

As mentioned above, ultrashort laser action creates a surface heating layer with a thickness of dT
for the duration of the pulse τL, which is small compared to the hydrodynamic time ts = dT/cs.
On the time scale ∼ ts, the hydrodynamic effects associated with the decay of the high-pressure
dT-layer into acoustic waves and entropy-vortex mode become decisive.

It is clear that in hydrodynamic numerical modeling, it is acceptable to consider the Cauchy
problem with initial data instead of the laser heating stage. In this case, we compress the time
interval τL to zero and start our numerical calculation directly from the heating zone created at
the end of the laser pulse. The heating zone is a layer in which the temperature and pressure
are sharply increased compared to their values before the start of the laser pulse.

Exclude from the analysis a thin layer at the boundary with vacuum in which the significant
effects of electronic pressure pe. This layer thickness of csteq, since pressure pe exceeds pressure
of the ion subsystem over times of the order of time of existence teq of the surface of two-
temperature (2T-) state [62–68].

Note that the model [69–71] does not take into account the effect of electronic pressure.
It is a hybrid model in which two-temperature physics is embedded in molecular dynamics
(TTM+MD).

For gold, the 2T relaxation time is 3–6 ps, respectively, the thickness of the electron
rarefaction wave is csteq ≈ 12 nm. The warm-up zone is dT ≈100–150 nm. For other metals,
the values teq, csteq, dT are significantly less. But the ratio csteq < dT is preserved.

In our formulation of the hydrodynamic problem, the emphasis is on non-one-dimensional
effects. The one-dimensional situation is studied in detail, see, for example, [62–65,70,71]. But
as mentioned above, the applicability of the one-dimensional calculation is limited in time by
the second acoustic scale; the first scale is ts = dT/cs, the second scale is determined by the
spot radius tgeom = RL/cs. The restriction on the distance of passage into the target thickness
is due to the radius RL, see figure 2.

In experiments, the laser beam passes through vacuum and is absorbed into a gold target,
see figure 3. Fast (supersonic [64, 72, 73]) heating due to the dramatically increased electronic



thermal conductivity in 2T conditions [64, 72] creates a heating dT-layer. Formation of the
dT-layer occurs at the 2T-stage.

Further in time, this layer expands very slowly (compared to sound and even hydrodynamic
speeds): the heat transfer goes into subsonic mode of electronic heat wave propagation [64,72,73].

There are two defining geometric parameters of the problem. First, this is the thickness of the
warmed up dT-layer, see figure 3. Second, it is the size of the lighting spot RL, these parameters
are shown in figure 3. We believe that the intensity distribution across the spot is constant.
Outside the spot, the laser beam intensity is zero. That is, the intensity distribution is similar
to the shape of a flat-topped hat.

We are interested in the transition from a one-dimensional to a non-one-dimensional mode
of acoustic perturbation propagation. This transition is performed at propagation distances of
the order of the spot radius RL. In typical experiments, the radius RL is much greater than
the thickness of the warmed up layer dT ∼ 0.1 µm. This is true even when focusing at the
diffraction limit, when RL ∼ λ ∼ 1 µm for the optical range of electromagnetic wavelengths.
Since RL ≫ dT, then pressure distribution profile along the y coordinate at an early stage inside
the heating dT-layer has a weak effect on the acoustic wave profile at distances of the order
RL. Therefore, our calculations assume that the temperature and pressure distribution inside
the rectangle 3 in figure 3 is uniform in space. The density inside rectangle 3 is uniform at the
initial moment of time, since τL ≪ ts, and the rectangle with sides dT and 2RL does not have
time to unload in the vacuum direction. In addition, as mentioned above, we neglect unloading
in the electronic vacuum wave.

There are three statements of the problem taking into account the spatial geometry:

(i) Illumination of the target with a cylindrical lens. The movement occurs in the plane of
figure 3 along the coordinates y (normal) and x (tangential direction)—2D geometry.

(ii) Spherical lens that acts as a normal to the target. The flow is axially symmetrical. Current
lines are located in planes that pass through the lens axis. The motion can be described
both in full 3D geometry and in geometry associated with the cylindrical radius rcyl and
the coordinate z along the lens axis and along the normal to the target plane.

(iii) Spherical lens that illuminates the target at an angle. In this case, the lighting spot is an
ellipse. The problem is solved in 3D geometry with coordinates z, x, y.

In this paper, we will limit ourselves to case i. Cases ii and iii require separate consideration.
The geometry and coordinate system corresponding to case i are shown in figure 3. The
calculation is performed in a rectangular calculation area with the dimensions of the rectangle Lx

horizontally in figure 3 and LAu +Lvac horizontally. To save the calculated cells, the symmetric
half of the flow is used at x > 0. Free boundary conditions are set on the upper, right, and
lower boundaries of the calculation area. On the left border of the rectangle x > 0 (the y axis
in figure 3) the symmetry condition is applied.

An important parameter is the size ratio RL/dT of the rectangle 3 in figure 3. The ratio of
pressures depends on this ratio: the ratio of the initial pressure in rectangle 3 to pressure at
the stage of the flow adjustment from quasi-one-dimensional to quasi-cylindrical; here we mean
a cylinder with a guide along the z axis in figure 3; the z axis is perpendicular to the plane of
figure 3.

So, the situation at the ends of the time interval covering the quasi-one-dimensional stage of
the flow depends on the value of RL/dT. Whereas how long our tracking of the quasi-cylindrical
stage is depends on the ratio of lengths Lx/RL, rAu/RL. It is clear that it is desirable to have the
largest possible values of these relations in order to determine the asymptotic attenuation of the
diverging quasi-cylindrical shock wave. Of course, the values of the relations Lx/RL, RAu/RL

are limited by computer resources: limits on memory and duration of the simulation. While the
need to allow the heating dT-layer determines the maximum size of the calculated cell ∆x = ∆y.



We use the eulerian hydrodynamic code: structured rectangular uniform grid covers the
rectangle with sides Lx and LAu + Lvac. The code passes through the contact boundaries in
an end-to-end way. The most important is the contact between target substance 1 (gold) and
“vacuum” 2; 1, 2 are the areas in figure 3. In our code, we cannot lower “vacuum” density to zero.
We will present two calculations below. In the first one, the density of a substance in vacuum
is equal to 200 kg/m3. In the second calculation,“vacuum” density is 2 kg/m3. Accordingly, the
ratio of gold (ρ0 = 19300 kg/m3) and vacuum densities equals 1/97 and 10−4, consequently, in
these two cases.

In the future, a separate calculation will be performed with the density of the medium 2 in
figure 3 is equal to 1000 kg/m3. This is necessary to describe the non-dimensional propagation
of a laser shock wave in water when exposed to gold through water [16, 19, 20, 52, 74, 75]. This
problem is interesting in connection with applications that study the synthesis of nanoparticles
during ablation into a liquid.

6. Approximation of the equation of state

As mentioned above, the Euler hydrodynamic code used describes the contact boundaries in
an end-to-end way; that is, contacts between substances are not tracked-there is a noticeable
numerical diffusion that smears the boundary. Therefore, to use the Euler code, you need cross-
cutting equation of state, which describes the cold gold in the region 1 in figure 3, hot gold
under high pressure in area 3 and vacuum 2. Pressure in region 3 rises due to strong isochoric
(i.e. at constant density) heating.

As such, we will use “shifted” equation of state of ideal gas. Let us explain what this means.
The most important circumstance that distinguishes equation of state of a condensed

substance is the ability of such a substance to resist stretching (negative pressures) and the
ability to maintain the final density ρ0 at zero pressure.

Of course, this circumstance is due to the cohesive component (attraction of atoms) in the
potential of interatomic interaction. In addition, it is known that condensed substances are rigid,
they have a sufficiently large Gruneisen parameter Γ. This parameter determines the value of
the thermal contribution to pressure pT = Γe, where e is the thermal addition to the energy.

In case of gas, the interaction potential has a small cor (interaction radius). The size of
the crust is small compared to the interatomic distance. Potential energy can be neglected in
comparison with the kinetic energy of atoms. In case of gas, the adiabatic index γ = Γ + 1
replaces the Gruneisen parameter. In gas, p = nkBT, e = (N/2)nkBT, where e is the kinetic
(thermal) energy of gas per unit volume, N is the number of degrees of freedom of an atom or
molecule, γ = (N + 2)/N, n is the concentration of atoms or molecules, kB is the Boltzmann
constant. Hence the ratio γ = Γ + 1. We see that in case of gas, pressure p = 0 is only reached
at zero density: n = 0.

In order to use equation of state of ideal gas, but at the same time avoid the condition
p = 0 at n = 0, we need the above-mentioned “shift” in pressure. To achieve this shift, we use
buffer gas that fills “vacuum” 2 in figure 3. The condensed medium that our equation of state
approximates is aluminum. This material often serves as a target in ablation experiments in air
and liquid.

Figure 4 shows the cold curve (green markers) and its approximation (red solid curve). As
approximating equation of state, we use ideal gas. Two parameters, namely pressure shift pbg
and adiabatic index γ can be varied to find the best approximation. Adiabatic equation of such
gas is

p = p0(s) (ρ/ρ0)
γ − pbg. (14)

The best approximation of the cold curve in figure 4 is achieved with a degree of 4.8 and a
background pressure value of pbg = 15 GPa. The approximation covers pressure range up



to Mbar values of interest, see the end of section 4. Curve (14) is shifted down pressure by
subtracting the constant pbg. This technique takes into account the negative pressure zone that
occurs when the condensed medium is stretched.

The calculations use equation of state (14) without a shift in pressure. In the state before the
impact of the laser pulse, the system from target 1 and vacuum 2 in figure 3 is in force balance.
In this case, pressure distribution is uniform across the entire calculation area and is equal to
the background value pbg. This is achieved, first, due to the small but finite density of gas in
“vacuum” 2 in figure 3. Second, we strongly heat vacuum gas so that its pressure is equal to the
value of pbg, as in the target, at a much lower density. Thus, the extension of target 1 in figure
3 of gas is forcibly balanced by the back pressure of the buffer, which is “vacuum” in region 2
in figure 3.

In case of vacuum, pressure equal to zero is always maintained at the boundary of condensed
medium with vacuum. The corresponding boundary condition is called a free boundary
condition. In terms of the dynamics of a condensed medium, it is important not that the
pressure at free boundary is zero, but that pressure at boundary of a dense substance does not
change over time and is always uniform along the boundary. In our situation with buffer gas 2
in figure 3 we are approaching a free boundary configuration using very low density buffer gas.

The pressure equilibrium gives nvacTvac = ntTt, where nvac, Tvac and nt, Tt is the density and
temperature of vacuum and the target, respectively. The ratio of the acoustic impedances of
the target and vacuum is equal to

zt/zvac = (nt

√

Tt)/(nvac

√

Tvac) =
√

Tvac/
√

Tt. (15)

As you can see, in a hot, low-density vacuum, this ratio is high. Hence, the buffer vacuum in
region 2 in figure 3 is indeed dynamically equivalent to vacuum in relation to a dense, relatively
cold target 1 in figure 3.

As mentioned above, we are interested in the hydrodynamic stage of development of processes
caused by ultra-short laser exposure. At this stage, the effects of thermal conductivity become
insignificant, since the coefficient of thermal conductivity at the single-temperature (1T-) stage is
reduced to tabular values. Accordingly, the speed of thermal conductivity heat transfer becomes
less than the speed of sound and hydrodynamic speeds. This circumstance allows us to ignore the
thermal conductivity in our hydrodynamic calculations, although there are large temperature
contrasts.

Thermal conductivity becomes important again in the later stages. At these stages, the melt
recrystallization occurs. Here we will limit ourselves to the hydrodynamic stages, which are
completed before recrystallization.

7. Calculation results: Shock wave geometry

Figures 5 and 6 illustrate, in particular, the effect of the ratio of vacuum and target densities
on the results. Unloading the hot rectangle 3 in figure 3 in the direction of vacuum induces
the appearance of a shock wave in vacuum. The speed of sound in very hot vacuum is high.
Therefore, the vacuum shock wave quickly runs through the vacuum rectangle 2 in figure 3 and
goes through the boundary conditions of free flow on the upper and right side borders of the
rectangle 2. In this case, there is an action of a shock wave in vacuum on the target through
the boundary of the target with vacuum.

A shock wave in vacuum runs fast. It overtakes the propagation of the shock wave in the
target. This is clearly seen in figure 5. At the time of 100 ps, the shock wave in the target,
running along the border with vacuum, passed a path of about 500 nm. While the shock wave
in vacuum has already left the vacuum rectangle. The shock wave in vacuum imprinted a trace
in the target—this is an oblique weak shock wave. The oblique wave is located at distances
along the x axis from 500 to 1000 nm near the boundary of the target with vacuum (below the



Table 1. Classification of modes depending on geometry and role of cohesion.

p < B p > B

1D βlow
1 βhigh

1

2D,3D βlow
2.3 βhigh

2.3

horizontal y = 0). It corresponds to a faint trace of bluish-bluish color in figure 5. This trace
is weak, since the ratio of densities of 1% is small; this was the ratio in case of the calculation
shown in figure 5. When the density ratio decreases to 10−4, the trace of the vacuum shock
wave becomes so weak that it cannot be seen in figure 6.

The development of the shock wave generation and propagation process in the target is shown
in figure 7, 8, and 6. These figures refer to time points 10, 30 and 100 ps, respectively. If at time
moments of 10 and 30 ps, the current can still be attributed to a quasi-flat flow, figure 6 with
t = 100 ps clearly refers to the beginning of the quasi-cylindrical stage. Unfortunately, at the
moment, our numerical resources do not allow us to track the evolution of the shock wave flow
at a distant quasi-cylindrical stage. This is a matter of the next stages of modeling. After the
transition from a quasi-flat to a quasi-cylindrical mode, the shock wave attenuation increases.

At the time of 100 ps, force field in figures 5 and 6 still far exceeds the thresholds of elastic-
plastic transformations. These thresholds are usually of the order of fractions of 1 GPa, although
they can increase by an order of magnitude in ultra-short exposure, see [36–38, 73, 76–87].
Therefore, the flow behind the shock wave at the time of 100 ps remains plastic. A simple
practical recommendation for using femtosecond pulses to harden metals is as follows. The laser
spot must be large in diameter. Then the shock wave attenuation is reduced due to lateral
offloads. Accordingly, the shock wave remains strong longer, able to plastically modify the
material.

The reddish-yellow areas in figures 5–9 refer to the compressed target material. The blue
background around the traffic zone refers to the background pressure of 15 GPa, see figure 4
and equation (14). The blue areas on the pressure maps in figures 5–8 represent the areas
of tension of the target substance. In them, the pressure drops below the value of 15 GPa.
Our calculations do not take into account spillover phenomena. Our calculations confidently
represent what happens during compression and moderate stretches. The regions associated
with the high-entropy substance of rectangle 3 in figure 3, experience strong stretches to fairly
small densities.

As mentioned, the initial area 3 in figure 3 decays into acoustic perturbations and entropy-
vortex mode. Acoustic waves in the order of ts = dT/cs leave the hot rectangle 3 in figure 3.
The entropy-vortex mode is associated with the substance of rectangle 3. In the accepted
approximation (14) regions of small densities of the entropy-vortex mode (laser torch) are
described at a qualitative level. Nevertheless, you can rely on the conclusion about the
localization of the fashion in a spot with a diameter of 2RL. Figure 9 with a complex structure
of the edges of the torch suggests hydrodynamic mechanisms for formation of rollers around
laser craters.

Rollers are formed where the melt from the target substance borders on the solid phase. Of
said relative binding entropy-vortex fashion to the hot stuff and little influence of heat conduction
on the propagation of heat in hand for spots more micron [88], it follows that a cushion is formed
at the boundary of liquid and solid phases.
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Figure 1. Diagram of the effect of an ultrashort laser pulse. The pulse creates a thin dT ≪ RL

warmed up dT-layer at the surface. This layer is also a high-pressure layer at the initial stage.
Decay of the high-pressure layer along the d’Alembert forms a quasi-plane characteristic 1,
propagating into the target volume. With a strong impact, a quasi-plane SW 1 runs ahead. At
the propagation distances of this SW in depth of the order of the laser beam radius zc ≈ RL a
quasi-plane SW (front of SW 1) is transformed into a quasi-hemispherical SW (front SW 2). In
this case, the attenuation of SW increases sharply due to spatial divergence. Due to the presence
of a free boundary (the boundary of the target with vacuum), wave amplitude decreases from
the point “c” to the point “w”. At the “w” point, the slash line is adjacent to the border.

Table 2. β values in linear case.

N = 1 N = 2 N = 3

0 1/2 1

Table 3. β values at weak nonlinearity.

N = 1 N = 2 N = 3

1/2 3/4 1 + ε

Table 4. β indexes in condensed matter with strong nonlinearity.

N = 1 N = 2 N = 3

≈ 1.045 ≈ 2.1 ≈ 3.2
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Figure 2. Changing SW attenuation modes with a distance of z or a time of t. The values
p, u are pressure and velocity values immediately behind the SW front at the central point “c”
shown in figure 1. The mode change occurs at z ≈ RL or at times tL ≈ RL/cs.



x

y
d
TR

L

L
x

L
Au

L
vac

1

2

3

Figure 3. Diagram of the effect of an ultra-short laser pulse on a volumetric target 1, see also
figure 1. The half-width laser beam RL passes through vacuum 2 and acts on the target 1.
Ultrashort beam action in a hydrodynamic setting “instantly” creates a warmed up layer 3 with
a thickness of dT. The lengths of Lx and LAu + Lvac determine the size of the calculated box.
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Figure 5. Two-dimensional hydrodynamic calculation in the coordinates x, y, shown in figure 3.
The geometric dimensions are dT = 50 nm, RL = 200 nm. The dimensions of the calculated
rectangle and the relationship between the height of the vacuum rectangle and the target
rectangle are clear from the drawing. A time point of 100 ps is shown. Grid cell size equals
2 nm. At this point in time, the “nose” of the shock wave c (see figure 1) moves away from
the boundary with vacuum at distance that exceeds the half-width of the laser beam RL. I.e.,
the transition from the quasi-flat mode of shock wave propagation to the quasi-cylindrical mode
begins. The initial ratio of vacuum and target densities in this calculation is 10−2.
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Figure 6. Pressure field at the same time moment of t = 100 ps as in figure 5. Grid cell
size equals 2 nm. This calculation has an important difference from the calculation in figure
5. The ratio of densities between vacuum and target substances has been increased a hundred
times. Here it is equal to 10−4. The results differ little. The only noticeable difference is the
disappearance of the weak oblique shock wave, which is visible in figure 5.
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Figure 7. Pressure field of laser-induced flow in a volume target at the time moment of 10 ps
after a laser strike. Grid cell size is equal to 2 nm. The initial pressure in the rapid heating
rectangle 3 in figure 3 was 2.6 Mbar. The ratio of vacuum densities to the target is 10−4.
Therefore, acoustic disturbances in vacuum have such a negligible amplitude that they are not
visible on this pressure map, compare. with a weak oblique wave visible in figure 5 with a density
ratio of 10−2. Ahead, a quasi-flat shock wave runs into the thickness of the target. There are
rounding side waves. The blue area refers to the discharge of the heated target material from
rectangle 3 in figure 3 in the direction of vacuum.
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Figure 8. Pressure field at the time of 30 ps. Grid cell size is equal to 2 nm. The plane shock
wave continues to propagate into the target thickness, compare with the situation at the time
of 10 ps in figure 7. At the same time, lateral discharge waves are moving further along the
front of the flat shock wave. We note a fairly strict limitation of the emission into vacuum (laser
torch) by the size of the half-width of the laser beam RL = 200 nm.
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Figure 9. Density field at time 100 ps; density ratio 10−4 on square grid. The pressure field at
this time for two different ratios of vacuum and target densities was shown above in figures 5
and 6. The structure of the shock-compressed region, the stretch wave, and the laser torch is
clearly visible. We see a side wave running along the surface of the target. At our amplitudes,
the side wave must be observed in experiments.



8. Conclusion

The paper investigates non-one-dimensional effects, accompanying the propagation of laser shock
waves from radiation spots of finite dimensions. These effects are important for applications
related to laser hardening of materials (such as laser shock peening) and with the synthesis
of nanoparticles during laser ablation in liquid. Geometric effects that determine the depth of
transformation of the polycrystalline substance of the target are studied under the action of the
stress field behind the shock wave. It is shown that when propagating to a depth of the order
of the spot size, the amplitude of the shock wave still significantly exceeds the thresholds of
elastic–plastic transformations. Moreover, this result applies to laser systems with conventional
energy. It is recommended to use the largest possible femtosecond irradiation spots. Then the
effects of lateral shock wave attenuation are reduced and the wave is less attenuated.
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[69] Schäfer C, Urbassek H M and Zhigilei L V 2002 Phys. Rev. B 66 115404
[70] Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114
[71] Zhigilei L V, Lin Z and Ivanov D S 2009 J. Phys. Chem. C 113 11892–906
[72] Inogamov N A et al 2011 Contrib. Plasma Phys. 51 367–74
[73] Demaske B, Zhakhovsky V V, Inogamov N A, White C and Oleynik I I 2013 Split and two-zone elastic-

plastic shock waves in nickel: a molecular dynamics study 18th Biennial Intl. Conference of the APS
Topical Group on Shock Compression of Condensed Matter held in conjunction with the 24th Biennial
Intl. Conference of the Intl. Association for the Advancement of High Pressure Science and Technology
(AIRAPT) vol 58 (Bulletin of the American Physical Society)

[74] Shih C Y, Shugaev M V, Wu C and Zhigilei L V 2017 J. Phys. Chem. C 121 16549–67
(Preprint https://doi.org/10.1021/acs.jpcc.7b02301)

[75] Inogamov N A, Khokhlov V A, Petrov Y V and Zhakhovsky V V 2020 Opt. Quant. Electron. 52 63
[76] Whitley V H, McGrane S D, Eakins D E, Bolme C A, Moore D S and Bingert J F 2011 J. Appl. Phys. 109

013505
[77] Inogamov N A, Zhakhovsky V V, Khokhlov V A and Shepelev V V 2011 JETP Lett. 93 226–32
[78] Crowhurst J C, Armstrong M R, Knight K B, Zaug J M and Behymer E M 2011 Phys. Rev. Lett. 107 144302
[79] Zhakhovsky V V, Budzevich M M, Inogamov N A, Oleynik I I and White C T 2011 Phys. Rev. Lett. 107

135502
[80] Inogamov N A et al 2012 AIP Conf. Proc. 1426 909–12
[81] Ashitkov S I, Komarov P S, Agranat M B, Kanel G I and Fortov V E 2013 JETP Lett. 98 7
[82] Perriot R, Zhakhovsky V V, Inogamov N A and Oleynik I I 2014 J. Phys.: Conf. Ser. 500 172008
[83] Ashitkov S I, Komapov P S, Agranat M B, Kanel G I and Fortov V E 2014 J. Phys.: Conf. Ser. 500 112006
[84] Zhakhovsky V V, Inogamov N A, Demaske B J, Oleynik I I and White C T 2014 J. Phys.: Conf. Ser. 500

172007
[85] Ashitkov S I, Komarov P S, Struleva E V, Agranat M B and Kanel G I 2015 JETP Lett. 101 276–81
[86] Kanel G I, Zaretsky E B, Razorenov S V, Savinykh A S and Garkushin G V 2017 AIP Conf. Proc. 1793

100030
[87] Kanel G I, Zaretsky E B, Razorenov S V, Ashitkov S I and Fortov V E 2017 Phys. Usp. 60 490–508
[88] Shepelev V V and Inogamov N A 2018 J. Phys: Conf. Ser. 946 012010


