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Figure 4. Extension of the pressure profile due to nonlin-
ear reflection at the glass-Al boundary. The pressure profile
is longer than the temperature profile which produces the
pressure profile—compare the horizontal arrows.
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Figure 5. Transformation of pressure profile into time
dependence of the shift ∆xrear. The Al foil thickness is
350 nm, τL = 150fs. The Fabs in simulation is adjusted to
fit the experimental data.

The nonlinear reflection of the minus wave at the
glass-Al boundary greatly extends the width of the
acoustic wave propagating to the right side. The
pump-probe measurements detect this extension. The
extended pressure profiles are shown in Fig. 4. The full
width of the p(x, t = 100ps) profile is 470 nm, whereas

the width of the T -profile is ≈ 270nm at the instant
t = 20ps. At this instant the characteristic starting
from the point x = 0, t = 0 crosses the dT -layer, see
Fig. 3. The width of the T -profile gives the width
of the plus pressure wave without the tail. The two
widths of the T (x, t = 20ps) and p(x, t = 100ps) are
marked by the horizontal arrows.

The amplitude of the pressure tail is a measure of
temperature of Al at the glass-Al boundary after e-
i relaxation. In its turn, this temperature is linked
to the 2T electron heat conductivity κ : since higher
κ corresponds to lower temperatures. Comparison of
two profiles at t = 100 and 160 ps is shown in Fig. 4.
The profile t = 100ps is shifted to the position of the
p(x, t = 160ps) profile. The maximum of the profile
t = 100ps before the shift is marked by the vertical
arrow.

Comparison of calculated and measured shift profiles
is shown in Fig. 5.

Conclusions. In summary, we find two new acous-
tic phenomena caused by thermomechanical response
to UsLP irradiation. They are the imprint of 2T su-
personic melting into acoustic signal and formation of
a tail due to nonlinear interaction of acoustic and en-
tropy modes. We show that the model [5] for 2T κ
describes experimental data.

The work has been supported by the RFBR grant
No. 09–08–00969-a.
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ELECTRON COLLISION FREQUENCY AND HEAT CONDUCTIVITY
OF SIMPLE METALS UP TO THE ELECTRON TEMPERATURES COMPARED

WITH THE FERMI TEMPERATURE

Petrov Yu.V.∗, Inogamov N.A.

ITP RAS, Chernogolovka, Russia

*uvp49@mail.ru

Introduction. When operating with two-
temperature hydrodynamics equations one needs the
values of parameters characterizing the target mate-
rial in this state such as the electron-ion energy re-
laxation coefficient αei, electron heat capacity ce, elec-

tron heat conductivity κe. . It is often used the phe-
nomenological models the electron heat conductivity
κe is presented as the combination of low temperature
asymptotic value and high temperature plasma expres-
sion with taking into account the limiting value of the
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electron collision frequency. Low temperature (when
the electron temperature Te and Fermi temperature
TF obey the relationship Te ≪ TF ) asymptotic value
of the electron collision frequency is presented then in
the form of a sum of electron-ion and electron-electron
frequencies: νe = ATi + BT 2

e . The coefficient A in
the electron-ion part νei of the electron collision fre-
quency is experimentally defined with a sufficient accu-
racy both for solid and liquid state of aluminum in the
temperature range from temperature up to 2–3 kK. For
higher temperatures in a liquid state there is a quan-
tum mechanics calculation together with the molecular
dynamics simulation [1]up to Te = Ti = 10kK. At the
same time the value of a coefficient B in the electron-
electron part νee of full electron collision frequency is
not defined so well. Theoretical estimations [2, 3]give
even various values of the B order. We have calculated
electron-electron collision frequency νee of simple met-
als up to moderate electron temperatures of the order
of Fermi temperature TF as distinct from other calcu-
lations restricted by low electron temperatures.

Electron collision frequency. The frequency of
collisions of the chosen electron with the wave vector
~k1 can be written in the form of the sum over wave
vectors of the second electron ~k2 and transferred wave
vector ~q [2–4]

νee(k1) =

(2π/~)
∑

~k2

∑

~q

[U(~q)]2δ(ǫ1 + ǫ2 − ǫ′1 − ǫ′2)S. (1)

Here ~q = ~k′1 − ~k1 = ~k2 − ~k′2 with wave vectors of the
chosen electron and the second electron after collision
~k′1 and ~k′2 We consider conduction electrons in a simple
metal with the isotropic parabolic dispersion within
the effective mass m approach

ǫ(~k) = γk2, γ = ~
2/2m.

Thus function νee(~k1) (1) depends upon only k1 ≡ |~k1|.
Delta-function in (1) stands for the energy conserva-
tion low, S is a statistical factor

S = f2(1 − f ′1)(1 − f ′2) + f ′1f
′
2(1 − f2), (2)

f1 ≡ f(ǫ1), f ′1 ≡ f(ǫ′1), f2 ≡ f(ǫ2), f ′2 ≡ f(ǫ′2),

f(ǫ) =

(
1 + exp

(
ǫ− µ

Te

))−1

with f(ǫ) being Fermi distribution function, µ(Te) is a
chemical potential.

U(q) = 4πe2/(q2 + k2
s) (3)

is a Fourrier transformation of the screened Coulomn
interaction between two electrons with reverse screen
length ks [2–4].

Expression (1) can be written as a six-dimensional
integral over d3q/(2π)3 2d3k2/(2π)3 Writing d3q and
d3k2 in spherical coordinates

d3q = q2 dq dψq dt, t = − cos k̂1q,

d3k2 = k2
2 dk2 dψk2dt2, t2 = − cos q̂k2.

and introducing the transferred energy

α = ǫ1 − ǫ′1, β = ǫ′2 − ǫ2, (4)

α = γk2
1 − γ(~k1 + ~q)2 = 2γqk1t− γq2,

β = γ(~k2 − ~q)2 − γk2
2 = 2γqk2t2 + γq2,

one can present the integrand in the form

U2(q)δ(α− β)S (5)

with

S = f(k2)[1 − f(γk2
1 − α) − f(γk2

2 + β)]+

f(γk2
1 − α)f(γk2

2 + β).

(6)

Because of independence of itegrand (5,6) on the az-
imuth angles ψk2 and dψq, we can write

∫ ∫ ∫ ∫ ∫ ∫
...d3q d3k2 =

∫ ∫ ∫ ∫
...2π q2 dq dt 2π k2

2 dk2 dt2.

(7)

Taking into account definition (4) we obtain

dα = 2γ q k1 dt, dβ = 2γ q k2 dt2. (8)

and

2π k2
2 dk2 dt2 =

π

γ

k2

q
dk2 dβ,

2π q2 dq dt =
π

γ

q

k1
dq dα.

Now the collision frequency for the electron with given
wave number k1 takes the form

νee(k1) =
1

2(2π)3~γ2

∫ ∫ ∫ ∫

U2(q)δ(α− β)S(k1, k2, α, β)
k2

k1
dq dk2 dα dβ,

(9)

with S given by the expression (6). Delta-function
δ(α− β) reduces the integration over β to

νee(k1) = {1/[2(2π)3~γ2k1]}×
∫ ∫ ∫

U2(q)S(k1, k2, α, α)k2dq dk2 dα,
(10)

where the statistical factor can be easily integrated
over α in analytic functions:

∫
Sdα = Te

eǫ1/Te + eµ/Te

eǫ2/Te + eµ/Te

e(ǫ2+µ)/Te

e2µ/Te − e(ǫ1+ǫ2)/Te
×

ln
eǫ1/Te + e(α+µ)/Te

e(α+ǫ2)/Te + eµ/Te
= Te

1 + e(ǫ1−µ)/Te

1 + e(ǫ2−µ)/Te
×

e(ǫ2−µ)/Te

1 − e(ǫ1+ǫ2−2µ)/Te
ln
e(ǫ1−µ)/Te + eα/Te

1 + e(α+ǫ2−µ)/Te
=

s(ǫ2, α; ǫ1, µ, Te) = s(α). (11)
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With t, t2 changed within the range [−1, 1]. we have
the boundaries for β and α:

[β′ = γ(q2 − 2k2q)] ≤ β ≤ [β′′ = γ(q2 + 2k2q)] (12)

[α′ = −γ(2k1q+ q2)] ≤ α ≤ [α′′ = γ(2k1q− q2)]. (13)

Then limits of integration in the equation (11) are ob-
tained from the condition β′ < α < β′′ giving four
contributions into νee(k1):

νee(k1)/ξ = Ia + Ib + Ic + Id,

ξ = 1/[2(2π)3~γ2k1]. (14)

Here

Ia = Ia1 + Ia2 (15)

Ia1 =

k1∫

0

dq

k2=q+k1∫

k2=−q+k1

dk2 U
2 k2 [s(α′′) − s(β′)], (16)

Ia2 =

∞∫

k1

dq

k2=q+k1∫

k2=q−k1

dk2 U
2 k2 [s(α′′) − s(β′)]

Ib =

∞∫

0

dq

∞∫

k2=q+k1

dk2 U
2 k2 [s(α′′) − s(α′)] (17)

Ic = 0,

Id =

k1∫

0

dq

k2=−q+k1∫

0

dk2 U
2 k2 [s(β′′) − s(β′)]. (18)

Heat conductivity. From the kinetic equation
for the electron distribution function within the τ -
approach [2, 3]

~v(∂f/∂~r) = ~v(∂f/∂T )∇Te = −f (1)/τ. (19)

where f(ǫ) is a Fermi distribution function (2) we can
obtain f (1), the change of the equilibrium electron dis-
tribution due to the temperature gradient, and then a
heat flow

~Q =

∫
(ǫ− µ)~v f (1) 2d3k

(2π)3
, (20)

It gives the heat conductivity coefficient

κee =
kB

3

∫
(ǫ− µ) (−f ′ǫ) [µ′

T + (ǫ− µ)/Te ]×

v2 τ(ǫ)
k2dk

π2
,

(21)

Figure 1. Electron heat conductivity of aluminum due
to the electron-electron collisions normalized to the exper-
imental room temperature value.

where v = v(k) = ~k/m is the electron velocity. Ex-
pression (21) is applicable to single-band metals. This
approach is sufficient for aluminum up to electron tem-
peratures of about several tens eV because of the wide
energy interval between conduction and inner shell
electrons. For the gold with its d-band overlap with s-
p-band the validity of this single-band approximation
is restricted by essentially lower electron temperatures
Te ∼ 1 eV. Heat conductivity coefficient of aluminum
as a function of the electron temperature is shown in
Fig. 1. At low temperatures κee tends to the asymp-
totic behavior κee ∼ T−1

e . The range of the applicabil-
ity of low temperature asymptotic expression is small
compared with TF (∼ 10% of TF ). At Te = 1 eV the
low temperature value of κ is 15% smaller than the
value calculated from (21).

We can define then the effective frequency of
electron-electron collisions νee according to the Drude

Figure 2. Effective electron-electron collision frequency
derived from the electron heat conductivity coefficient of
aluminum (solid line) together with its low temperature
asimptotics (b=3.8, parabolic dashed line) and another
parabola with b=1.5.
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formula for heat conductivity to obtain

νee = νee|κ = ceV v2/(3κee), (22)

where ceV is the electron heat capacity per the unit
volume, v2 is a temperature dependent mean squared
electron velocity. At low temperatures, when νee ∝ T 2

e ,
it can be written as

νee|lT = b (EF /~) (kB Te/EF )2. (23)

The effective frequency νee as a function of the electron
temperature is shown in Fig. 2 together with the low
temperature asymptotic behavior (equation (23), b =
3.8).

Fig.2 also shows that the temperature range for the
applicability of low temperature asymptotics of the col-
lision frequency is restricted by the temperatures es-
sentially smaller than the Fermi temperature. When
using calculations based upon the equations (14), (22),
at higher temperatures the dependence of the electron-
electron collision frequency on the electron tempera-
ture differs to a great extent from the parabolic func-
tion.

Due to the wide change of the electron temperature
we used in our calculations Thomas-Fermi screening
of the electron-electron interactions with the reverse
screening length

ks =

√
4πe2

(∂µ/∂n)T

and chemical potential dependent both on the tem-
perature and density n of electrons. Thus the screen-
ing length in our case at given density depends on the
electron temperature and decreases with temperature
increase.
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OPTIMIZATION OF Kα YIELD FROM THE TARGET COVERED
WITH SPHERICAL CLUSTERS IRRADIATED BY FEMTOSECOND LASER PULSE

Kostenko O.F.∗, Andreev N.E.

JIHT RAS, Moscow, Russia

*olegkost@ihed.ras.ru

Introduction. Experimental study of hard x-ray
production from intense short pulse laser irradiation
of solid targets coated with dielectric spheres of well-
defined sizes exhibited a peak in Kα yield when the
spheres with diameter roughly half the laser wave-
length were employed [1]. This effect was attributed to
electric field enhancement at the surface of the particle
and multipass stochastic heating of fast electrons. We
present the model for calculations of Kα yield taking
into account accelerating field depletion due to laser
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Figure 1. The Kα yield from the copper substrate vs ρ.
Dashed line—the Kα yield from the copper solid (cf. Ref.
[5]). IL = 2 × 1017 W/cm2, θ = 45◦. Laser wave-length λ
= 0.4 µm, r0 = 5 µm, laser pulse duration τp = 40 fs.

power absorption by fast electrons, heated according
to Brunel mechanism [2] at the surface of perfectly
conducting sphere, which imitates metal or overdense
plasma cluster. Such approach is analogous to the
method applied in Ref. [2] for consideration of the flat
target.

Model. Electric field outside the cluster is a su-
perposition of the incident laser field and the field of a
scattered wave, E = Ei+Es. The latter is described by
real reflection coefficient, Es = rEs0, with Es0 being
the electric field of the wave scattered by the perfectly
conducting sphere. If the field Ei is the field of a plane
wave that is polarized in the x direction and propa-
gates along the z axis, Ei = exEL exp(ik0z − iωt),
then the radial component of electric field E at the
cluster surface is given by

E0(r, ρ, θ1, ϕ1) = −ELe
−iωt cosϕ1

ρ

∞∑

n=1

in+1(2n+ 1)

× P 1
n(cos θ1)

[
jn(ρ) + rbrnh

(1)
n (ρ)

]
. (1)

Here, ρ = k0R, with R being the cluster radius; jn(ρ)

and h
(1)
n (ρ) are spherical Bessel functions of the first

and third kinds, and P 1
n(cos θ1) is the associated Leg-

endre function. In spherical coordinates, the angle θ1 is
measured from the direction of the wave vector k0‖ez

and the angle ϕ1, from the direction of the polariza-
tion vector ex. Coefficients of the expansion of the
field Es0 in solenoidal vector spherical wave functions
for the case of the sphere’s permittivity ǫ → −∞ are
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