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SHOCK WAVES.
DETONATION. COMBUSTION

THE STRUCTURE OF SUPERELASTIC&PLASTIC SHOCK WAVE
Khokhlov V.A,*' Inogamov N.A.,! Zhakhovsky V.V.,?2 Anisimov S.I.,'! Petrov Yu.V.!
LITP RAS, Chernogolovka, 2JIHT RAS, Moscow, Russia, USF, Tampa, United States

*v_a_kh@mail.ru

Last year we have reported the observation of su-
perelastic shock waves [1, 2]. These waves move with
the “elastic” velocity (in a continual approach this ve-
locity is defined by the elastic constant K + %G con-
trary to the velocity of plastic wave, which is defined by
the elastic constant K ). Here K and G are bulk and
shear moduli of a material. However, the pressure be-
hind the shock wave is several times the classical Hugo-
niot elastic limit. Such waves have been observed in
experiments for example [3-7]. The motion of a shock
wave and the subsequent plastic shock are correlated.
Now we present the structure of superelastic&plastic
shock wave on the base of molecular-dynamic simula-
tion [2, 8]. The calculations correspond conditions of
the experiment [3]: a laser pulse with duration of 120 fs
and a power of 7.7-10'3 W /cm? (the absorbed energy
is 2.6 J/cm?) affects the aluminum film.

The initial elastic shock wave (EISW) begins to form
well before the maximum of compression wave on the
front of melting (see Fig. 1, 2).

The thermal wave leaves far forward at a two-
temperature stage due to the fact that the thermal dif-
fusivity of the electron subsystem x. = k./c. is much
more than the one of a whole substance x = k./c (here
c. and c are the heat capacities of electron subsys-
tem and whole matter respectively, and the heat con-
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Figure 1. Pressure profiles at short time. The numbers on
the curves specify time in ps. The arrows indicate the sites
with the greatest steepness of the pressure profile of which
elastic (EISW) and the plastic wave (PISW) shock waves
are further formed, and the break of the pressure profile at
the boundary of the elastic and plastic zones from which
additional compression wave radiates (ACW)
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Figure 2. Pressure p,, and temperature at t = 6.4ps.
Lines M indicated position of melting front

ductivity of a matter is determined dominantly by the
electron heat conductivity k.). When passing through
the melting front the pressure profile becomes steeper.
This creates the seed from which the leading elastic
shock wave develops (Fig. 2).

The pressure on the elastic shock wave at this time is
close to the Hugoniot elastic limit (HEL, for aluminum
the part of GPa). Then the elastic shock quickly passes
the front of melting.

Emerging plastic shock (PISW) overtakes and
pushes the emerging elastic one. The pressure in the
metastable elastically compressed material behind the
elastic shock rises to a value several times larger than
HEL (in aluminum up to tens of GPa). Ahead of the
PISW there arise additional compression waves (ACW)
(see Fig 3, 4). The fact that the material remains
elastically deformed after the first front and experi-
ences plastic deformations on the second front can be
seen from the profiles of shear stress (dashed lines in
Fig. 3 and following figures), which is proportional to
the pressure at uniaxial shear in an elastic material
and is reset to zero by plastic deformations. The pres-
sure on ACW is higher than on the EISW. They move
also in an elastic medium. Following one after another,
these waves are catching up EISW and push it (see Fig.
5).

In the advanced stage long time elastic shock moves
with its “elastic” rate (taking into account the contri-
bution of shear stresses under uniaxial compression)
and plastic shock moves together with it almost simul-
taneously. Then the plastic wave gradually loses its
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Figure 3. Formation of elastic (EISW) and plastic (PISW)
shock waves and additional compression (ACW) wave be-
tween them. Pressure profiles (continuous lines) and shear
stress (shaped lines) are shown. The numbers on the curves
specify time in ps.
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Figure 4. Pressure p;, and shear stress and temperature
at t = 25.6 ps

intensity and slowed down (see Fig. 6). Finally the
plastic wave stops. Plastically deformed layer of a fi-
nal thickness is thus fixed.

The resulting graphics of a motion of elastic and
plastic shock waves and additional compression waves
in comparison with the shock wave in two-temperature
hydrodynamic calculations (2T-HD) without taking
into account the elastic corrections are shown in Fig.
7. With the coexistence of several compression waves
there are plotted the coordinates of stronger one. We
can see the jumps in the graph of compression waves in
passing from one wave to another. At large times when
the plastic shock wave decays it is shown the position
of the front of plastic deformations.

The simulation results well correspond to results of
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Figure 5. Superelastic&plastic wave structure at medium
times.
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Figure 6. Attenuation and braking of a plastic wave on
large times. Pressure profiles (continuous lines) and shear
stress (shaped lines) are shown. The numbers on the curves
specify time in ps.
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Figure 7. The elastic SW (thick lines), the plastic wave / plastic deformations front (thin lines), additional compression
waves (short dashed lines) and SW position from 2T-HD calculations (long dashed lines)

experiments [3] (see [2, 8]). At large times the position
of EISW corresponds to the results of experiments [4],
which have been performed with the same character-
istics of the laser pulse as [3], but with thicker films.
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HIGH-RATE DISLOCATION PLASTICITY
AND SHOCK WAVES ATTENUATION IN METALS

Mayer A.E.,*' Khishchenko K.V.,> Levashov P.R.,> Mayer P.N.!
LCSU, Chelyabinsk, 2JIHT RAS, Moscow, MIPT, Dolgoprudny, Russia

*mayer@csu.ru

Introduction. In the present work, we develop the
theoretical approach for high-rate dislocation plastic-
ity proposed in [1-3]. Plastic strain rate is found out
through the dislocations sliding; equations for kinetics
and motion of dislocations contain pseudo-relativistic
terms.

In papers [1-3] a good agreement had been obtained
with experimental data for elastic precursor shape and
height for a number of metals (copper, aluminum, iron,
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titanium); but an agreement for the unloading wave
shape was not so good. It should be note that similar
problem with the unloading wave modeling was met by
other researches as well [4]. Possible reason of such de-
viation is a formation of various dislocation structures,
as it was pointed out in [3].

As opposed to [1-3], more complex kinetic equa-
tions are used here, which take into account the mobile
dislocations and another type of dislocations, which



