
THERMAL CONDUCTIVITY DUE TO S-S AND S-D ELECTRON INTERACTION IN

NICKEL AT HIGH ELECTRON TEMPERATURES

PetrovY.V.∗, InogamovN.A.

ITP RAS, Chernogolovka, Russia

*uvp49@mail.ru

The essential feature of warm dense matter arising
when ultrashort laser pulse acts on a metal target is
a two-temperature state with hot electrons and cold
crystalline lattice. Laser irradiation absorbed by a tar-
get initially heats a target within thin irradiation at-
tenuation depth. Then heat propagates into the bulk
target dominantly via the electron thermal conductiv-
ity being accompanied by the electron-ion energy ex-
change. In such a manner a target heated layer is pro-
duced. Because of ultrashort laser pulse duration and
high speed of electron heat transfer the heated layer
is formed practically with unchanged volume of a tar-
get. Depth of this heated layer and later dynamics of
target expansion up to its ablation essentially depends
upon the magnitude of electron thermal conductivity.
For simple metals, such as aluminum, electron ther-
mal conductivity coefficient was calculated in [1]. In
transition metals (nickel as an example) there are two
groups of electrons which affects the thermal conduc-
tivity caused by electrons. First of them are s- elec-
trons with small effective mass, they have a high mobil-
ity and mainly contribute to the electron heat transfer.
And the other group is d-electrons with much larger ef-
fective mass, and as a consequence their mobility and
contribution to the heat flow is much smaller than for
s-electrons. But d-electrons cause effective scattering
of s-electrons in addition to s-s- scattering. We calcu-
late the electron thermal conductivity coefficient and
effective frequencies of s-s and s-d interactions in nickel
at the wide range of electron temperatures when the
thermal exitation of both s- and d-electrons is signifi-
cant.
Consider the collision of s-electron having the mo-

mentum p with the electron having momentum p′:

p+ p′ −→ (p+ q) + (p′ − q) (1)

Here q is a transferred momentum. Then the fre-
quency of collisions of s-electron with the momentum
p with other electrons can be written as
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(2)

We suppose that the interaction between electrons has
the screened Coulomn interaction form:

U(r) =
e2

r
e−κr (3)

with the screening length λ = 1

κ
. Statistical factor

Φ(p,p′,q) is defined by the electron energy bands par-
ticipating in the scattering process. Electron ss −→ ss
scattering is considered in [1] in detail.

When considering ss −→ ss scattering, statistical
factor has a form

Φ(p,p′,q) = fs(p′)[1− fs(p+ q)][1 − fs(p′ − q)]
+fs(p+ q)fs(p′ − q)[1 − fs(p′)],

(4)
where fs is the Fermi function of s-electrons. Electron
density of states of nickel at T=0K exibits strongly dif-
ferent s- and d-bands. We approximate s- and d-bands
to be parabolic with effective masses of electrons con-
sequantly ms = 1.1m,md = 7.7m (m is a free electon
mass).
Now consider s − d scattering as sd −→ sd process

and heat conductivity due to it. Electron energy in s−
and d−bands can be written as

ε(p) = εs +
p2

2ms

, ε′(p′) = ε1 +
p′2

2md

, (5)

where εs is a bottom of s-band, ε1 is a bottom of d-
band with a top of d-band to be ε2. Statistical factor
in this case is

Φ(p,p′,q) = fd(p′)[1− fs(p+ q)][1 − fd(p′ − q)]
+fs(p+ q)fd(p′ − q)[1 − fd(p′)]

(6)
Due to energy conservation
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and also
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we obtain
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= ε− α,
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Then statistical factor takes a form

Φ(α, β) = fd(ε′)[1− fs(ε− α)][1− fd(ε′+ β)]
+fs(ε− α)fd(ε′+ β)[1 − fd(ε′)].

(10)

Here at given electron temperature T
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kT + 1
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according to the suggestion of local thermal equilib-
rium in the electron subsystem. k is the Boltzmann
constant. Then in terms of α and β
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Now δ-function responsible for energy conservation has
a form δ(α−β) and the collision frequency of s-electrin
having the momentum p with d-electrons can be per-
formed as

ν(p) = ν(p) = 2π
~
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Introducing polar and azimuthal angles ϑ, ϕ for vec-
tor q ( ϑ is the angle between p and q ), we can write

d3q = 2πq2dqdt

Here t = −cos(ϑ) and we have integrated the q-space
volume element over the azimuthal angle ϕ from 0 to
2π. With a new variable t

α =
p2 − (p+ q)2

2ms

=
2pqt− q2

2ms

Then we obtain:

dt =
ms

pq
dα

At given q we can introduce polar and azimuthal an-
gles ϑ′, ϕ′ for the vector p′ ( ϑ′ is the angle between p′

and q ) Then

d3p′ = 2πp′2dp′dt′

Again d3p′ is integrated over ϕ′ from 0 to 2π. Now we
can write β in the form
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After the integration over β because of the presence of
δ-function this expression is transformed to
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where statistical factor has the form
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Let calculate the integral over α
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Because of after scattering d-electron remains in d-
band, it means that

ε1 6 ε1 +
(p′ − q)2

2md

6 ε2

p′2 + 2p′qt′+ q′2

2md

6 ε2 − ε1

Let us introduce the boundary momentum of d-
electrons pd =

√

2md(ε2 − ε1) Then p 6 pd and
p′2 + 2p′qt′ + q2 6 p2d It follows from here that t′ 6
p2

d
−p′2−q2

2p′q
= t0 In dependence of position of point t0

with respect to the interval [−1, 1] two cases arise.
Case I: t0 > 1. In this case integratioin over t′ is made
within the interval [−1, 1]. In a case II 1 6 t0 6 1 and
we integrate over t′ in limits 1 6 t′ 6 t0. Consider-
ing all variants when integration over β gives different
from zero result because of the presence of δ(α − β)
in equation (12), we obtain different regions of two-
dimensional integration in p′ − q plane at given p as
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Figure 1. Electron thermal conductivity coefficient due to
s-s and s-d scattering in nickel as compared with that one
in aluminum (in aluminum only s-s scattering contributes
to the electron thermal conductivity).

a parameter. Making an integration over p′ and q, we
thus obtain the collision frequency ν(p) at given p.
Then we can obtain the thermal conductivity coef-

ficient due to s-d electron scattering :

κsd(T ) =
k
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(13)
Here vs is a velocity of s-electrons. From calculated
values κsd(T ) we can also define an average frequency
of s-d electron collisions ν̄sd(T ) using the Drude rela-
tion with the average squared velocity of s-electrons
and their heat capacity per unit volume Cs(T ):

κsd(T ) =
1

3

Cs(T )v̄
2

s

ν̄sd(T )
(14)

Calculated thermal conductivity coefficient due to s-
s and s-d electron scattering in nickel as a function

of electron temperature is shown in Fig.1 in compar-
ison with that one in aluminum. In aluminum only
s-s electron scattering contributes to the electron ther-
mal conductivity. Average frequency of s-s and s-d
electron collisions deduced from the expression (14) is
displayed in Fig. 2 for both materials. Within the elec-
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Figure 2. Electron-electron collision frequency in nickel
because of s-s and s-d scattering and frequency of s-s elec-
tron collisions in aluminum.

tron temperature interval of the order of several eV
of these frequencies under consideration s-d collision
frequency in nickel exibits nonmonotonic behaviour.
Electron-electron collision frequency together with the
frequency of electron-ion collisions define total electron
relaxation responsible for the electron thermal conduc-
tivity.
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