Physics of Extreme States of Matter — 2014

Moscow, 2014
Physics of Extreme States of Matter — 2014

This compendium is devoted to investigations in the fields of thermal physics of extreme states of matter and physics of high energy densities. Different models and results of theoretical calculations of equations of state for materials at high pressures and temperatures, physics of shock, detonation and combustion waves, interaction of intense laser, x-ray and microwave radiation, powerful particle beams with matter, techniques of intense energy fluxes generation, experimental methods of diagnostics of ultrafast processes, low-temperature plasma physics, issues of physics and power engineering, as well as technology projects are considered. The majority of the works has been presented at the XXIX International Conference on Equations of State for Matter (March 1–6, 2014, Elbrus, Kabardino-Balkaria, Russia). The edition is intended for specialists in physical and technical problems of power engineering.

This conference is dedicated to the centenary of birth of academician Yakov Borisovich Zel’dovich (March 8, 1914–December 2, 1987).

The conference is sponsored by the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant No. 13-02-06212).

The editorial board announces with deep regret the death of the colleagues and friends, Dr. Vladimir Vladimirovich Milyavskiy (July 22, 1969–June 12, 2013), who was the organizing and program committees member of the Conferences on Equations of State for Matter and Interaction of Intense Energy Fluxes with Matter, and Prof. Gennady Vasil’evich Sin’ko (February 7, 1950–September 8, 2013), who was a regular and active participant of these conferences starting with one of the first meeting.

ISBN 978-5-94691-625-7

© Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 2014
CONTENTS

CHAPTER 1. EQUATIONS OF STATE FOR MATTER

Minakov D.V., Khatnov B.A., Levashov P.R. Structural properties of aluminum in the vicinity of melting transition .. 5
Dyachkov S.A., Levashov P.R. Methods for calculating the shell corrections in the Thomas–Fermi model 8
Krugzev D.V., Levashov P.R. Transport properties of aluminum in the two-temperature regime 12
Batani D., Palaev S., Deziarch R., Alverdiev A.A. About liquid carbon properties in the Mbar regime 16
Smirnov E.B., Kostitsyn O.V., Tscherbakov V.N., Prosvirnin K.M., Kiselev A.N., Achluin A.A. Hugoniot adiabat of a porous low-sensitive explosive .. 19
Badretdinova L.Kh., Kostitsyn O.V., Smirnov E.B., Stankevich A.V., Ten K.A., Tolochko P.B., Shakirov I.Kh. Equation of state for 1,3,5-triamino-2,4,6-trinitrobenzol based on the results of the static experiments .. 23
Nakhushov A.H., Nabishcheva V.A. Some mathematical models of fractional Brownian motion 28
Rusin S.P. On using Wien’s displacement law to determine the true temperature of materials 31
Lepshkin A.R., Bychkov N.G. Evaluation of thermal conductivity of metals in the field of centrifugal accelerations and forces ... 33
Petrovsky T.K., Tikhomirov G.V., Volkova I.A. Electrical resistance of monomeric and rombohedral C60 at high pressure .. 36
Fortov S.V. Comparative analysis of the formation of vortex cascades in various problems of turbulence 39
Khokonov A.Kh. Analytical model for the transverse vibration of graphene and (0001) graphite surface 42

CHAPTER 2. SHOCK WAVES. DETONATION. COMBUSTION

Mayer A.E., Khishchenko K.V. Numerical study of shock-wave structure in elastic-plastic medium 45
Shakhmy D.V., Astinov V.V., Panishchenko A.V., Sidorenko N.S. Shock-wave formation of superconducting Cu & CuO2 interfaces ... 52
Dudorov A.E., Mayer A.E. Motion and fracture of Chelyabinsk meteoroid in atmosphere 56
Kotov A.V., Koslov A.V., Polvtsoch V.P., Shuravov A.V. Experimental simulation of spacecraft protection from space debris and micrometeorites .. 59
Yankovskiy B.D., Derbas A.A., Ananev S.Yu., Andreev A.V. Experimental and computing research of shock-wave welding of diverse metals ... 61
Satonkina N.P., Ershov A.P., Prouel E.R., Karpov D.I. Electric conductivity of detonating tetryl at different initial conditions ... 68
Alymov M.I., Derbas A.A., Gordopolova I.S. On the role of plasma jet in explosive welding 70
Lapin S.M., Mochalova V.M., Utkin A.V. The influence of additions of diethylentriamine on the reaction time of nitromethane in detonation waves .. 72
Kiverin A.D., Ivanov M.F., Snyagulina A.E. Zeldovich concepts for transient combustion and flammable limits determination .. 74
Ivanov M.F., Kiverin A.D., Liberman M.A., Yakevskte I.S. Three-dimensional flow structures induced by the accelerating flames in channels ... 78
Grakhov Yu.V., Khlyov V.I. Numerical study of shock wave impacts on dynamic objects 82
Gavvnenkov S.A., Grozdev L.G., Nesterov A.S. The influence of the adiabatic index on the gas flows mixing in Mach shock waves .. 87
Golovastov S.V., Korovob A.E. Influence of ejector on the efficiency of nozzle head at pulse operation 90
Kritskorogovtso M.S., Golub V.V. Experimental investigation of a gas jet instabilities under acoustic excitation ... 94
Gavrjikov A.I., Aleksandrov O.O., Chernenko E.V., Chiavaro B.B., Efimchenko A.A., Schechetov N.G., Velmakin S.M., Zaretsky N.P. Large scale detonation experiments with mixtures of propane and propane-acrylene in air ... 97
Biswla G.Yu., Lenkevich D.A., Golovastov S.V., Mikhalkin A.Yu., Bocharnikov V.M. Parametric study of the detonation propagation in narrow channels filled with a mixture of propane butane with oxygen ... 100
Konnykov A.V., Likhachev A.P. Non-classical behavior of shock and rarefaction waves and the quark-hadron phase transition: analysis on the basis of the MIT-bag equation of state 108
CHAPTER 3. POWER INTERACTION WITH MATTER

Koshelev A.A., Andreev N.E. The structure of the accelerating wakefield generated by ion bunches .. 116
Orlov N.Yu., Denisov O.B., Verganova G.A., Rosmej O.N. Mathematical modeling of radiative and gas-dynamic processes in plasma for experiments, where both intense laser and heavy ion beams are used ... 119
Timofeev I.S., Burdonsky I.N., Goltssov A.Yu., Makarov K.N., Leonov A.G., Yufa V.N. Spalls formation in the thin polycrystalline targets under the action of the high-power laser pulse .. 123
Petrov Yu.V., Inogamov N.A. Electron-phonon scattering and related electrical conductivity in noble and transition metals at high electron temperature ... 126
Migdal K.P., Petrov Yu.V., Zhakhovsky V.V., Inogamov N.A. Two-temperature equations of state for d-band metals irradiated by femtosecond laser pulses ... 129
Savitskii A.P., Gavasheli Yu.O. Consideration of processes of heat exchange in ionic crystals ... 133
Shemarin V.G., Attarskaya A.B., Mkrtychev O.V., Privatov V.E. Glass nanocomposites laser ablation destruction studies ... 135
Gurvitsov I.V., Yuriachev M.V. Synthesis and characterization of Mo nanoparticles using laser based techniques ... 138
Mager P.N., Mayer A.E. Numerical investigation of tensile strength of metal melt .. 142

CHAPTER 4. PHYSICS OF LOW TEMPERATURE PLASMA

Zaporozhets Yu.B., Mintsev V.B., Gryaznov V.K., Reinholt H., Röpke G., Fortov V.E. Polarized reflectivity properties of shock-compressed plasma with strong interparticle interaction .. 146
Bystriy R.G. Spectrum pressure fluctuations of non-ideal plasma .. 151
Bobrov V.B., Triguer S.A., Litinski D.I. Universality of phonon–rotor spectra in liquids, helions and heat capacity of superfluid helium ... 154
Antipov S.N., Vashiev M.M., Petrov O.F. Dust chains and diffusion in cryogenic dusty plasmas .. 161
Zobnin A.V., Usachev A.D., Petrov O.F. Numerical simulation of the DC discharge with dense dusty clouds ... 163
Prudnikov P.I., Rykov V.A., Zherebtsov V.A., Meshakin V.I., Glotov A.I., Bazhal S.V., Romanov V.A., Andryushin I.I., Vladimiriv V.I., Deputatov I.V. Dust structures created in inert gases by the beam of heavy accelerated ions ... 166
Andryushin I.I., Zherebtsov V.A., Meshakin V.I., Prudnikov P.I., Rykov V.A., Vladimiriv V.I., Dephatov I.V. The formation and properties study of extended dusty plasma structures of non-self-sustained discharge .. 168
Pinchuk M.E., Budin A.V., Leontiev V.V., Leks A.G., Bogomaz A.A., Rabteh Ph.G., Pozubenkov A.A. Magnetic probe diagnostics in powerful high pressure discharge .. 172
Pashchina A.S., Chinnov V.F., Andryanyova Y.N., Efimen A.V. The space–time spectroscopy of the pulsed high enthalpy plasma jet .. 176
Sarisyayan M.A., Isakiev E.H., Gadhziev M.Kh., Kavarnsin D.I., Chinnov V.F. Voluntary graphite sublimation by high-enthalpy plasma stream .. 187
Bocharnikov V.M., Semin N.V., Savelev A.S., Golub V.V. On synergic jet flow produced by dielectric barrier discharge .. 190
Klementyev I.D., Pinchuk M.E. Formation of electrical discharges under free surface of current carrying fluids .. 192

AUTHOR INDEX ... 197
ABBREVIATIONS .. 199
TWO-TEMPERATURE EQUATIONS OF STATE FOR D-BAND METALS IRRADIATED BY FEMOTOSECOND LASER PULSES

Migdal K. P.1*, Petrov Yu. V.2, Zhakhovsky V. V.1, Inagamov N. A.2
1 VNIA, Moscow, 2 ITP RAS, Chernogolovka, Russia

*mgidal@vnia.ru

The cold curves for energy and pressure of Copper, Iron, and Tantalum were obtained using methods of the density functional theory. Hydrostatic and uniaxial deformations in the range from double compression of the initial volume per atom to double stretching are considered. Allotropic transformation from α-phase of Iron to the hexaferrum with the growth of pressure is found at pressure of 13 GPa. We also obtained cold curves for two-temperature states in which crystal lattice at 0K and hot electrons in the range from 1 kK to 55 kK. The behaviour of electronic internal energy, pressure, and density of states is investigated in the volume and temperature ranges mentioned above. The maximum hydrostatic strains and the types of lattice instabilities were theoretically predicted for the considered metals. At the first time the efficacy of high electronic temperature on the electronic heat conductivity and electric resistivity is calculated for transition metals by the approach based on Boltzmann kinetic equation in τ-approximation.

Keywords: two-temperature state, phase transition in Iron, density functional theory, femtosecond laser

The femtosecond laser irradiation with optic wavelengths and moderate intensities acting on a metal surface is considered. With regard to metal the laser pulse energy is absorbed by free electrons on a depth of a skin layer. In this layer non-equilibrium energy distribution exists between electrons and ion lattice. In the present experimental data and theoretical calculations one has been demonstrated that a few picoseconds are required for electron-ion equilibration. The duration of electron-electron relaxation is order of magnitude 100 fs. We can consider surface layer as electron and ion subsystems, where the former obeys Fermi-Dirac distributions and has a temperature significantly greater than a temperature of the latter which is close to the metal initial temperature, ~ 300K. This approach is valid in the case of the relation between two relaxation times mentioned above. During the two-temperature state (2T) a spatial distribution of atoms in lattice is constant because the electron-ion relaxation time is less than the typical time of acoustic unloading. Taking into account this circumstance we carried out the DFT calculation of electron thermodynamics properties for some metals in the wide range of ion temperature and considered deformations. The similar volume and electronic temperature ranges have been considered in recent works [1, 2].

The influence of strong hydrostatic and uniaxial strains and compressions was investigated in the cold curve calculations for metals using DFT and taking into account probabilities of allotropic transformations.

Calculation method The cold curves of internal energies E and pressures P for metals with zero lattice temperature are obtained for Cu (fcc lattice), Fe (bcc and hcp), and Ta (bcc) in the range from double compression to double expansion using the DFT code VASP [3, 4]. We used PAW pseudopotentials with LDA and PBE forms of exchange-correlation functional. In the latter case the closest to the conduction band for each metal p-electron band is additionally considered. Other used parameters: plane waves cutoff is 500 eV, 21³ Monkhorst-Pack grid, and the number of free electron states is equal or greater than 20. These parameters were chosen as the result of convergence check and guarantee that convergence error is not greater than 1 %.

The validity of the value of expanded volume where metal lattice becomes unstable was approved by the DFT calculation of elastic moduli. The cutoffs were enlarged up to 600 eV (Cu), 800 eV (Fe), 650 eV (Ta). The obtained values for elastic moduli for some metal specific volumes at hydrostatic expansion allow to determine the type of lattice instability which is the reason of metal breakdown. The presence of hot electrons have been taken into account with the use of smearing value and the Fermi-Dirac smearing was used. We carried out the calculation of 2T equations of state in the range from double compression to double expansion for electron temperatures up to 55 000K.

The results and comparison with experimental data. On the Fig. 1a the obtained cold curve for Cu is compared with the data of experiments [7, 8] in the case of compression. As we can see all curves are close to each other and the PBEpv curve is in better agreement with experimental data than other curves. The PBEpv curve for hcp (solid line) and bcc Fe (dashed line) is compared with the experimental data [13] obtained by ramp wave compression (RWC) method. This method allow to obtain the values of pressure for solid matter which cannot be achieved using previously used technique. In [13] the new record for solid Fe was received—560 GPa. It is necessary to notice that the dependence of pressure from compression obtained in this work not pure experimental curve but the result of experimental data treatment with the help of QMD simulation and Delby model. The analogous comparison for Ta is shown in Fig 1a where the experimental and FP-LMTO calculation data are in good agreement with our results (mainly PBEpv curve).

The dependences of Gibbs energy from pressure for bcc and hcp lattices of Fe are shown on the Fig 2a in the range of α - ε allotropic transformation search. As the result of this search the pressure of bcc-hcp trans-
Figure 1. **Left panel.** The calculated pressure from density for compressed Cu using LDA (dash), PBE (dash-dot), and PBEpv (solid) pseudopotentials compared with the results of experiments [7] (open diamonds)[8] (thick crosses) **Middle panel.** The pressure from atomic volume for hcp (solid) and bcc (dash) compressed Fe calculated with the help of PBEpv pseudopotential and the result of recent ramp wave compression experiment [13] where anharmonic approximation for Debye-Waller factor calculation have been used. **Right panel.** The calculated pressure from density for compressed Ta using LDA (dash), PBE (dash-dot), and PBEpv (solid) pseudopotentials compared with the results of experiment [7] and FP-LMTO calculation [14] (thick crosses).

Figure 2. **Left panel.** The dependence of Gibbs energy from pressure for Fe in hcp (solid line, thin crosses) and bcc (dashed line, thick crosses) phases. **Middle panel.** Left Y scale: The dependence of elastic moduli combinations—criteria of lattice stability from relative specific volume in the case of Fe. The line with thick crosses corresponds to $c_{11} + 2c_{12}$ combination, open circles $- c_{11} - c_{12}$, diamonds $- c_{44}$. If the first combination is negative it means bulk instability, the second—shear instability, the third—tetragonal shear instability. Right Y scale: The dependence of pressure (dash-dot line) in bcc Fe from relative specific volume in the range corresponding to expansion. **Right panel.** The same values as in the middle panel for Ta.

formation is found with taking into account of uncertainties of G due to convergence error and finite step of the grid of pressure values. The found values is 14_{-4}^{+5} GPa (PBE) and 13_{-2}^{+4} (PBEpv) and in good agreement with the results of known experimental data [9]. This received values are obtained only after addition calculation on more denser grid (100 points of V/V_0 in the compression range from 0.9 to 1 V/V_0).

On the Fig 2b and 2c the values for Fe and Ta of elastic moduli combinations which negative values (even if one of them) determine the area of lattice instability in the case of hydrostatic expansion. The minimum value of pressure is achieved at the specific volume where the lattice becomes unstable. As we can see for both metals the results for cold curves and more accurate elastic moduli calculations are in good agreement because the growth of pressure with volume is obvious case of unphysical behaviour at expansion.

The results for 2T EoS for Cu, Fe, and Ta are shown on Figs 3 as the dependencies of pressure from density at some values of electron temperature. The influence of additionally considered p-electron band in PBE pseudopotential is negligible for most cases (cannot be shown on this figure) and only for strong compression of Ta (Fig 3c) the difference caused by this band is sufficient to take it into account. The positive shift
of pressure due to the growth of electron temperature is more noticeable for Cu than for transition metals. In the case of Fe the described above bcc-hcp transition cannot be reliably found at the demonstrated values for electron temperature 25000K and 55000K. We can explain such behavior of Fe as the consequence of decrease of lattice influence on metal state when the electron subsystem energy becomes sufficiently high.

Electronic transport coefficients calculation.

The calculation of the electronic conductivity coefficient was carried out with the use of approach [5, 10] which is based on the result for Boltzmann kinetic equation for free electrons in the relaxation time approximation. On Fig 4a the data for κ_{2T} obtained with taking into account of the electronic spectra dependence from electron temperature and found previously [10] are represented. Even if we neglect the frequency of d-electron – ion collisions so the result for d-electron conductivity $\kappa_{2T,d}$ is overestimated, the value of $\frac{\kappa_{2T,d}}{\kappa_{2T}}$ is less than 0.02 on the full electron temperature range. The calculated by DFT partial electron densities of states allow us to check the statement that the s-electron impact in electronic conductivity is dominated. On Fig 4b the comparison between the results for κ_{2T} obtained in our two parabolic approximation [10] and QMD calculations based on Kubo-Greenwood approach [6] is provided for the case of Au. We can see on Fig 3a that two areas of electron temperatures exist. On the first area where $T_e < 30000K$ our result has a peak at 5000 K and slightly decrease while the QMD values increase monotonously with T_e. The second area starts from $T_e > 30000K$ and there the considered results are in good agreement. Authors supposed that the peak of κ_{2T} is the consequence of weak d-band influence on
collision frequencies at temperatures which less than the absolute value of d-band edge $\varepsilon_{2,\text{Au}} = -1.7 \text{eV}$.

Taking into consideration the electron temperature influence on electron density of states causes the noticeable decrease of electron-ion coupling in the case of Cu, as we can see on Fig 5a. The represented on Fig 5a values of coupling a was obtained using Kaganov-Lifshitz-Tanatarov approach [10, 11].

Also the contribution of electron-phonon interaction in energy and charge transfer was carried out at high electron temperatures. The determination of this contribution makes possible to obtain the accurate analytical expression for electron resistivity of metal with hot electrons [12].

The phonon spectra was approximated by modified Debye approach where the deviation from linear acoustic behavior at large values of phonon momentum is taking into account. For two-band metals all possible processes for s- and d-band electrons are considered and the conditions on the values of electron and phonon momenta have been taken into account during Boltzmann kinetic equation solutions integration. These solutions were obtained for electrons interacting with outer electric field in relaxation time approximation. The electric conductivity is determined with the use of Ohm law.

As a result the curves of electric conductivity σ dependence from T_e was calculated fro Au and Ni. On the Fig 5b one demonstrated that the value σ is almost not depend from T_e for noble metals(Au). But the same value for Ni demonstrates steep decreasing at temperatures is order of magnitude of melting temperature for Ni. It is worth to notice that the demonstrated dependence was not taking into account in the previous known to the authors works.

This work was supported by RFBR (grant No 13-02-1078).

15. faculty.virginia.edu/CompMat.