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1. INTRODUCTION

A large number of modern technologies are based
on the application of ultrashort laser pulses (USLPs)
of duration τL ~ 0.01–1 ps. These technologies include
the formation of hollow blisters on the film surface;
the structuring of films for biological applications and
microelectronics; the enhancement of the static elec�
tric field at the at the tips of miniature jets crowning
hollow bumps; the transport of microscopic pieces of
the film from the substrate to the receiver (laser print�
ing); and so on. Detailed lists of corresponding refer�
ences are given in recent publications [1, 2] devoted to
the analysis of blistering and nanojets. Beginning with
publications [3, 4], it has been known that mechanical
effects and hydrodynamic flows induced by them play
an important role in the case of USLPs. The thermo�
mechanical effects are pronounced when the condi�
tion of ultrasonic heating is satisfied. Under this con�
dition, the duration τT of the formation of a heated
layer of thickness dT is smaller than the sound time ts =
dT/cs over which a hydrodynamic perturbation propa�
gates through the heated layer with velocity of sound
cs. Accordingly, the phase velocity dT/τT of the forma�
tion of the heated layer is higher than the velocity of
sound.

When an optical USLP is acting on a thick metal
target, scales τT and dT are determined by the following
two main factors. The first factor is the duration of

two�temperature (2T) relaxation teq (τT = teq), at the
end of which electron temperature Te and ion temper�
ature Ti become approximately equal. Second, it is
electron thermal conductivity κ2T in the 2T state (see,
for example, [5] and the literature cited therein); usu�
ally, teq ≈ 2–7 ps, dT ≈ 50–140 nm, and ts ≈ 10–30 ps.
The estimates based on the heat balance equations
Ci∂Ti/∂t = α(Te – Ti) for electrons and ions [6] have
the form

(1)

(2)

where Ci and Ce = γTe are the ion and electron heat
capacities, Ei and Ee are the internal energies of the ion
and electron subsystems, γ ~ 100 J m–3 K–2, (Ti)fin is
temperature of ions and electrons at the end of the 2T
stage, (Te)max is the maximal electron temperature at
the 2T stage, and α ~ 1017 W K–1 m–3 is the coefficient
of the electron–ion exchange energy in the condensed
medium [7–9].1 The maximum of ion energy (Ei)max is
attained at the end of the 2T stage.

1 The coefficient α for the dielectric was calculated in [10]. In [7–
9], the values of α were calculated only for metals.
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If we assume approximately that (Ei)max ~ (Ee)max
and substitute this estimate into relations (1) and (2),
we obtain

where γ100 = γ/100 J m–3 K–2; α17 = α/1017 W m–3 K–2;
χ10 = χ2T/10 cm2/s, and F100 = Fabs/100 mJ/cm2. It is
assumed that χ2T ~ 10 cm2/s because an estimate based
on molecular�kinetic theory gives χ ~ (1/3)lvF =
20 cm2/s for the electron mean free path l = 3 nm and
Fermi velocity vF = 2000 km/s.

The values of thermal conductivity κ2T can exceed
the values of κ1T in one�temperature (1T) states by
more than an order of magnitude [7, 9, 11]. For this
reason and on account of the fact that τT = teq � τL,
depth dT (2) considerably exceeds skin depth δ. We can
write the energy conservation law taking into account
the change in the thickness of the heated layer during
the time of 2T relaxation: (Ei)maxdT ≈ (Ee)maxδ ≈ Fabs.
Substituting these equations into relations (1) and (2)
and assuming that δ = 15 nm, we obtain

These relations give an idea, first, of the characteristic
scales of the hot layer and, second, of the extent to
which indeterminacy in coefficients γ, α, and κ affects
the electron–ion relaxation rate and thickness dT of
the heated layer. Assuming that dcrat ~ dT, we can esti�
mate the depth dcrat of the crater above the ablation
threshold.

In cases where laser radiation is acting on a metal,
situations are possible for which teq < τL < ts. Then 2T
states do not appear, and time τT is equal to pulse dura�

tion τL. In this case, heating depth dT ~  is

slightly smaller than depth (2): χ1T ~ 1 cm2/s.
What are the remarkable features of supersonic

heating (dT/τT > cs)? Why are hydrodynamic effects
especially significant for fast heating? As a matter of
fact, in cases of supersonic heating, the substance has
no time to expand in accordance with growing internal
energy, which increases due to absorption of energy
from an external source. This means that we are deal�
ing with isochoric heating: ρ = ρo, where ρo is the den�
sity of the substance under normal conditions [4, 12–
18]. The pressure in the layer being heated increases in
proportion to the absorbed energy. For a fixed density
ρ = ρo, the pressure is of the order of internal energy
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increment ΔE per unit volume because the Grüneisen
parameter is on the order of unity. An increase in pres�
sure p (as compared to the initial value p = 0) sets the
substance in motion on the sound time scale ts. The
velocities of motion u are of the order of p/z ~ ΔE/z
where z = ρcs is the acoustic impedance of the
medium. The energy increments typical of the condi�
tions considered here are of the order of 1 eV/atom,
the pressure is of the order of 10 GPa, and velocities
u ≈ 0.4 km/s. Conversely, slow heating (τT � ts)
increases the pressure only slightly; therefore, veloci�
ties of condensed matter in this case are low (u �
ΔE/z).

Isochoric heating and thermomechanical factors
do not only appear when an optical USLP is acting on
metals. For an optical photon and a metal, skin depth
δ ~ 10–30 nm is small. For this reason, it is 2T thermal
conductivity κ2T and electron–ion heat transfer coef�
ficient α [5, 7, 9] and not δ that determine scales dT

and τT (see relation (2)). In weakly absorbing media
(e.g., in semiconductors with a band gap larger than
photon energy or even in polymers [19]), thickness dT

is equal to the radiation absorption depth datt. For val�
ues of datt of the order of a few micrometers, the
boundary between the supersonic and subsonic
regimes is at the heating pulse durations τL of the order

of a nanosecond.2 Thermal conductivity effects are
usually insignificant at the hydrodynamic stage.
A one�dimensional approximation cannot be used if
radius RL of the laser beam is on the order of or
smaller than absorption length datt (see the example
with a polymer [19]). Other conditions being identi�
cal, the ablation threshold in absorbed fluence in
joules per square centimeters increases approximately
in proportion to depth datt because to overcome the
strength of the material, a required energy density ΔE
per unit volume should be created. In the case of the
thremofluctuational mechanism of nucleation, the
threshold value ΔE decreases slowly (logarithmically)
with increasing depth datt due an increase in the vol�
ume in which nucleation takes place. The increase in
the volume elevates the preexponential factor in the
expression for the nucleation rate. This remark con�
cerns the dependence of the threshold fluence on datt.

Strain rate /V ~ (u/cs)/ts = u/datt also decreases with
increasing datt.

For lasers operating in the range of hard ultraviolet
radiation or soft X�rays, the radiation frequency
exceeds the plasma frequency. Therefore, the skin
layer is absent, reflection is small, and absorption of
photons mainly takes place in interband transitions. It
is important that in the mechanism of absorption of
hard photons, the strong difference between metals

2 Here, we are speaking of intensities below the optical breakdown
threshold. In the case of breakdown, the concentration of free
electrons changes jumpwise. Accordingly, absorption depth datt
strongly decreases.

V·
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(without a gap in the energy spectrum in the conduc�
tion band) on the one hand and semiconductors and
insulators (for which the gap exists) on the other hand
disappears. In the case of hard photons, optical break�
down does not take place. During optical breakdown,
length datt sharply decreases with the development of
the breakdown. In the case of illumination by hard
radiation, absorption length datt can only increase with
increasing photon flux (for this purpose, extremal
intensities are required [20, 21]). This increase is asso�
ciated with a decrease in the number of electrons in a
certain inner electron shell due to ionization [20, 21]
(hollow ions). In this shell, predominant absorption of
photons with a preset energy takes place.

The fundamental difference between a metal and a
nonmetal is distinctive for optical photons (optical
breakdown of semiconductors and insulators). In con�
tract to the case of an optical laser and metals, in
which the absorption depth is determined by the skin
layer, absorption depth datt (and, hence dT) in the case
of hard radiation sharply changes from values of the
order of 10 nm to ~1 μm [22, 23] depending on the fre�
quency of the hard photon relative to the edges of
bands of inner electron shells (see examples given in
[24, 25] for metals and silicon). Accordingly, together
with heating depth, the thresholds and structure of
residual damages of irradiated spot change sharply
[24, 25]. Other examples of isochoric heating and
thermomechanical effects correspond to bombard�
ment by electron beams [26] or ion beams [27]. In this
case, the values of datt considerably exceed heating
depth dT (50–140 nm) by optical USLPs due to the
large path lengths for high�energy particles. In these
cases, the heating is supersonic if the pulse duration is
limited to a value on the order of nanoseconds (if datt is
on the order of a micrometer) and microseconds for
datt on the order of 1 mm.

We considered above the physics of action of laser
radiation on homogeneous targets, with emphasis laid
on the thermomechanical ablation. The discussion
was devoted to the determination of conditions for the
thermomechanical regime in an extremely wide class
of effects including, first, the action of short and long
pulses; second, lasers with soft and hard photons, and
third, metals, semiconductors, and insulators. We
have also considered cases when ablation is one�
dimensional and when 1D approximation is inappli�
cable.

In the case of thin films analyzed in this study, the
situation changes from the case of homogeneous tar�
gets. Here, we assume that a film is thin if its thickness
df is smaller than thickness dT of the heated layer on the
irradiated surface of the homogeneous target. To
explain experiments performed in [28–33], we con�
sider the thermomechanical ablation of thin films
deposited on a dielectric substrate in the case of opti�
cal lasers. There are two peculiarities associated with
thin films. First, there is the strong nonuniformity of
heating in the film–substrate system due to the low

thermal conductivity of the substrate as compared to
the thermal conductivity of the metal. Therefore,
almost the entire amount of heat applied to the metal
remains in it over time intervals on the order of 100 ps
and longer (these time intervals strongly exceed the
acoustic scale ts ~ 10 ps for films of thickness df ~ 10–
100 nm). Second, there is the nonuniformity of the
target tensile strength in the film–substrate system, for
which the contact between the film and the substrate is
the weak point due to limited adhesion.

The thermomechanical ablation threshold Fa in a
homogeneous metal target exposed to optical USLPs
is two–three times higher than the melting threshold
Fm [5, 34]. A surface layer of melt of thickness dm of the
order of thermal scale dT is formed at threshold Fa and
above it. For F > Fa, a rupture of metal takes place
within the melt layer. In the case of films, the situation
changes. A film clings to glass due to adhesion. The
film separates from glass if the stress exceeds the limit�
ing adhesion stress. As a rule, the maximal adhesion
stress is substantially smaller than the ultimate stress in
the bulk of the metal. In this case, the spalling thresh�
old of the film from glass is below the melting thresh�
old for the film; i.e., under the action of USLPs, even
film that has not melted splits from glass if the stresses
exceed the adhesion threshold. Spallation occurs not
in the bulk of the film, but along the contact with the
substrate (Fig. 1).

This study intends to explain phenomena observed
in experiments [1, 28–33]. In these experiments,
USLPs illuminate gold films of thickness df ~ 20–
70 nm, which were deposited on dielectric substrates.
As can be seen in the photographs from [1, 28–33], the
observed phenomena occur due to the combination of
hydrodynamic effects and surface tension. The solu�
tion to the problem proposed below is based on the
division of the problem into two (initial and capillary)
stages. At the initial stage, the film is accelerated along
the normal to the substrate plane. Acceleration of the
film is due to the counterpressure of the substrate (see
Fig. 1). The counterpressure appears as the response of

z

P

p

Gold film

Dielectric

Vacuum

substrate

Fig. 1. Repulsion of film from substrate after isochoric
heating of film by USLPs. Isochoric heating elevates pres�
sure P in the gold film. Isochoric heating means that pres�
sure increases rapidly as compared to hydrodynamic time
df/cs. Counterpressure p of the substrate imparts momen�
tum to film in direction of z axis through film–substrate
dynamic contact. If adhesive force is insufficient to bal�
ance the momentum gained by film, film is separated from
substrate.
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the substrate to the pressure of the film on the sub�
strate. The duration of the acceleration stage is deter�
mined by hydrodynamic time df/cs ~ 10 ps of the
dynamic contact of the film with the substrate during
and after the action of USLPs. The initial stage ends
when the film is separated from the substrate.

To describe experiments [28–33], we must take
into account the effect of surface tension. The capil�
lary stage takes place if the film is melted and its veloc�
ity after the separation from the substrate is not too
high. The scale of capillary velocities can be deter�
mined from a comparison of surface energy and
kinetic energy:

where RL is the radius of the USLP beam, σ is the sur�
face tension of the liquid metal, ρo = 19.3 g/cm3 is the
initial density of the gold film, and df is the initial film
thickness. For typical values of parameters RL ~ 1 μm,
σ ~ 103 erg/cm2, and df ~ 50 nm, we obtain v

σ
 ~

50 m/s. The heated spot on the film surface has its
maximal temperature at the center because we con�
sider USLPs with the maximal intensity to be on the
beam axis. Thus the velocity distribution over the
heated spot has the highest value at the center. In this
case, the separated film assumes the shape of a cupola
with the shell formed from the substance of the sepa�
rated film (Fig. 2). The duration of the capillary stage
can be estimated as t

σ
 ~ RL/v

σ
 ~ 10 ns. It can be seen

that the durations of the initial and capillary stages dif�
fer by three orders of magnitude.

πRL
2σ πRL

2ρodfvσ

2
/2,∼

The short time of the interaction of the film with
the substrate (about 10 ps) as compared to the capillary
time (about 10 ns) makes it possible to considerably
simplify the complicated 3D problem, including the
hydrodynamics of motion of the substrate and the
film. With such a simplified approach, the problem is
divided into two stages. At the first stage, we analyze
the hydrodynamics of the film together with the sub�
strate. We consider the absorption of the USLPs, the
heating and relaxation of the electron subsystem, the
thermal expansion of the film, the generation of a
shock wave (SW) in the substrate, and the spallation of
the film from the substrate. At this stage, the problem
is solved in a one�dimensional (1D) approximation
because the USLP beam diameter exceeds the film
thickness by at least an order of magnitude (df ~ 10–
100 nm, while RL ~ 1 μm and larger). In Section 2, the
initial velocities of the local center of mass of the film
and the local temperature are calculated as functions
of the local value of absorbed laser energy Fabs(x, y)
[J/cm2], where x and y are the coordinates in the plane
of the substrate surface (see Figs. 1 and 2). The second
stage begins after the separation of the film from the
substrate. The detachment region on the surface of the
substrate has the shape of a spot bounded by a contour.
In Section 3, the dynamics of the film fixed at the con�
tour under the action of surface tension is described.

Experiments [1, 28–33] are directly related to
future technologies. In these experiments, the forma�
tion of nanocupolas and nanojets is observed, which
will widely be used in microelectronics, medicine, and
nanoplasmonics [1, 2]. At present, three models have
been proposed for explaining this important effect. In
the first model, molecular�dynamics (MD) methods
are employed to consider spallation of film from an
absolutely rigid substrate [1]. Although this assump�
tion (the rigidity of the substrate) considerably simpli�
fies the problem,3 it cannot be accepted. It will be
shown below (see Section 2) that the presence of a
deformable substrate reduces velocity vz of separation
of the film by 5–7 times. Low velocities vz ~ v

σ
 are

required for the capillary effects (Section 3) to be
manifested (nanojets cannot exist without them). In
the formulation with the rigid substrate, velocity vz

can be reduced only by decreasing absorbed energy
Fabs. However, in this case we operate below the melt�
ing threshold, and capillary effects disappear. It is nec�
essary to observe the subtle balance between velocities
vz ~ v

σ
 and melting. High velocities at a high temper�

ature are required. It is shown in this study that this
can be attained if the film expands into the “soft” sub�
strate at the initial stage.4 

3 Because it eliminates the hydrodynamics of the substrate.
4 “Soft” substrate means that its acoustic impedance is small

compared to film impedance. In the case of a rigid substrate, the
inverse situation takes place.

z

r

Film

Dielectric
substrate

Fig. 2. Spallation and blistering of the film after action of a
USLP. If maximal intensity of the USLP is at beam axis
(e.g., in the Gaussian intensity distribution), detached film
assumes cupola shape. For low energy supplied to heating
spot, surface tension stops the upward motion of cupola
along z axis and returns film back to substrate. At elevated
energies, cupola spalls and flies upwards, leaving a hole in
film on substrate. Figure shows symmetric half of pattern.
Symmetry axis is z axis.
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The second model [2] is limited to analysis of the
dynamics of the film prior to its melting. In such a for�
mulation, it is unclear how high�intensity mass fluxes
to the axial region are formed (z axis in Fig. 2). How�
ever, it is these fluxes that are responsible for the jet
formation at the vertex of a nanocupola (Section 3).

In the third model [33], the analysis of the near�
surface dynamics of spallation of the film and its sub�
sequent flight is replaced by the analysis of the Kura�
moto–Sivashinsky (KS) phenomenological equation.
This equation was used earlier by some authors for
describing the formation of chaotic structures under
laser action. Jet formation is attributed to the peculiar�
ity of the KS equation [33]. In an approach based on
the KS equation, the entire film dynamics is localized
on the substrate (neither film detachment nor hollow
expanding bump is considered). In this study, we com�
bine the analysis of film separation (Section 2) with
the capillary theory (Section 3). This allows us to
describe even such a specific effect as the formation of
the counterjet (see Fig. 22 below). This effect has been
discovered recently (see Fig. 7 in [28]).

2. LASER IRRADIATION
OF A FILM ON A SUBSTRATE

The laser energy absorption in the fluence range of
interest (Fabs ~ 10–100 mJ/cm2) under isochoric heat�
ing produces pressures ~Fabs/df = 10F10/d10 (GPa) in
the film, where F10 = Fabs/10 [mJ/cm2] and d10 = df/10
[nm]. Pressures with such amplitudes appear behind
the detonation front of chemical explosives. It can be
stated that the laser transforms the metal of the film
into an explosive with pressures on the order of 10 GPa
and temperatures T ~ 1000 K (T [K] ~ 4000F10/d10).
Let us consider the expansion of such an “explosive”
on the substrate surface (impact against the substrate
and bounce from it). The distribution of the absorbed
energy density Fabs is uniform over the film surface; see
Fig. 1 (1D formulation of the problem). We must find
the velocity vz(Fabs) of the center of mass of the film
after its rebound from the insulator. The dielectric sub�
strate is usually made of glass.5

In Section 2.1, we will describe a 2T thermody�
namic model and the hydrodynamic equations used in
this study. In Section 2.2, we will describe how thermal
processes occur, because it is an increase in the inter�
nal energy that sets the substance in motion. We will
study the absorption of laser radiation energy, electron
heating, the propagation of heat over the electron sub�
system, and electron–ion relaxation owing to which
the lattice temperature increases and melting takes
place. In section 2.3, we will give the description of the
process of film spallation under uniform irradiation
over the film surface (1D problem). In Section 3, the

5 In [33], a CaF2 substrate was used.

3D spallation of film subjected to nonuniform irradia�
tion is considered.

2.1. Hydrodynamic Equations
and a Thermodynamic Model

The 1D motion of a film is described by the follow�
ing two�temperature (2T) hydrodynamic equations:

(3)

(4)

(5)

(6)

where

The z axis is perpendicular to the plane of the film and
substrate (see Fig. 1). We are using Lagrangian coordi�
nate zo. Prior to the action of USLPs, Lagrangian
coordinate zo coincides with the Euler coordinate z:
zo ≡ z(zo, t = –∞). Function z(zo, t) defines the trajec�
tory of a fixed material (Lagrangian) particle. In the
1D formulation, this is a plane moving along the z axis
with velocity u. In this formulation, velocities perpen�
dicular to the z axis are equal to zero. Equations (3)
correspond to the conservation of mass and the kine�
matics of motion. The mass per unit area, dσS = ρodzo,
which is pressed between the planes zo + dzo and zo, is
constant. The dynamic equation has the form (4)—
the difference of forces between planes zo + dzo and zo

determines the acceleration of mass dσS.
The energy equations are written separately for the

electron subsystem (Eq. (5)) and the ion subsystem
(Eq. (6)) [6]. We disregard the thermal conductivity of
glass in the time scale under consideration. In Eqs. (5)
and (6), in addition to the thermal terms, the hydrody�
namic terms associated with work P dV in each sub�
system are taken into account. These additions plus
the hydrodynamic terms distinguish the hydrody�
namic 2T system (3)–(6) from the 2T energy equa�
tions in the pioneering work [6].

It can be seen that time is measured from the peak
of USLP intensity (formula for the source of Q). The
spatiotemporal distribution of the absorbed energy is
determined by function Q; the USLP duration is τL,
and the absorption depth is equal to the skin depth δ.
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The dissipation of the electromagnetic wave energy
occurs inside the metal near the film boundary. In the
case of laser�induced forward transfer (LIFT) [1], in
the formula for Q we take for zg the glass–gold inter�
face, because the laser beam passes through the sub�
strate. In the case of laser�induced backward transfer
(LIBT), we take for zg the interface between the gold
film and vacuum, because the laser beam passes
through the vacuum gap (see Fig. 1).

Equations (3)–(6) of the 2T hydrodynamics are
supplemented with the thermodynamic model of 2T
states of condensed medium and with the model
describing the most important kinetic coefficients
(thermal conductivity κ and electron–ion heat�trans�
fer coefficient α). In this study, in solving system (3)–
(6), we take the 2T thermodynamic state equation
(2T�EOS, equation of state) in the same form as in
[35]; namely, 2T�EOS is represented by the sum of the
ion and electron contributions; accordingly, free
energy is given by

(7)

A number of approaches have been developed to cal�
culating the electron contribution, from the Fermi and
Thomas–Fermi models to quantum calculations
based on density functional theory (DFT) [8, 9, 36–
51]. Electron correction Fe to the one�temperature
(1T, Te = Ti) EOS has been taken into account for
more than fifty years. This correction becomes signif�
icant at high temperatures [52] (see also [36, 37]). Ear�
lier, correction Fe was calculated in the Fermi approx�
imation. The approach in which electrons are
described as an ideal gas (this forms the essence of the
Fermi approximation) was extended to the 2T situa�
tion also [40, 41]. Modern studies are based on DFT
simulation [8, 9, 35, 39, 42, 43, 45, 46, 48–51].

In this study, we are using a combination of the
wide�range EOS [36, 37, 53, 54] and DFT computa�
tions [35]. Our DFT computations are in good agree�
ment with the wide�range EOS over “cold” curves for
metals [5, 35, 55, 56]. In connection with experiments
[1, 28–33] on gold films, we are interested in the range
of states with densities from the gas to the solid phase
and with ion temperatures Ti up to a few kilokelvins
and electron temperatures Te up to a few electronvolts.
In this range of states and for a fixed density ρ, we dis�
regard the effects of (i) ion temperature Ti on the elec�
tron spectrum and (ii) electron temperature Te on the
elastic constants (electrons possess the Fermi energies,
and the addition of a few electronvolts does not change
the situation significantly [38]).6 Under these two
assumptions, we can write instead of expression (7) for
the chosen range of states the approximate expression

6 The second assumption is not applicable to semiconductors and
insulators because it rules out athermal melting [57]. In addi�
tion, it is well known that gold strength noticeably increases
upon a substantial increase in Te [39, 46]. In the approximation
used here, this effect has to be disregarded.

F ρ Ti Te, ,( ) Fi ρ Ti Te, ,( )= Fe ρ Ti Te, ,( ).+

(8)

Here, the dependence of function Fe on argument Ti is
omitted in accordance with the first assumption.
Function Fi(ρ, Ti, Te) weakly depends on the electron
temperature (second assumption). Therefore, in func�
tion Fi(ρ, Ti, Te) in Eq. (8), we set Te = Ti = T. The sum

is used for calculating the wide�range 1T�EOS [36, 37,

53, 54].7 In this case, the electron contribution (ρ,
T) is calculated using an approximation close to the
ideal gas approximation. To take into account the
electron contribution refined here, we subtract func�

tion (ρ, T), which gives

Thus, notation Fi(ρ, Ti, Ti) in Eq. (8) indicates the 1T�
EOS with the subtracted electron contribution. It
should be noted that at temperatures Ti up to a few

kilokelvins, electron contribution (ρ, Ti) is small,
compared to ion contribution Fi(ρ, Ti, Ti).

In approximation (8) adopted here, electron con�
tribution Fe is independent of ion temperature Ti (Ti ≈
2–5 kK). For this reason, this contribution can be cal�
culated at zero ion temperature Ti = 0 (cold lattice).
Accordingly, the electron one�particle spectrum of
gold at Te = 0 was calculated for the cold lattice using
the DFT approach. Analogously to [8], this spectrum
was used for determining electron energy Ee. The elec�
tron energy approximated used in the present study
has the form

(9)

where Ee is given in kilojoules per gram and Te is mea�
sured in kelvins. Approximation (9) reproduces the
increase in the electron heat capacity upon an increase
in temperature Te due to excitation of d electrons. The
electron pressure was calculated by the formula Pe =
(2/3)Eeρ. In the above approximation, addition Fe has
the meaning of the electron thermal contribution to
the Mie–Grüneisen equation.

For solving system (3)–(6), electron–ion heat
transfer coefficient α and thermal conductivity κ are
required. The former coefficient was borrowed from
[7–9]. The thermal conductivity of gold in the 2T
conditions was calculated by the formula

7 In [36, 37, 53, 54], notation F(ρ, T) is used instead of F(ρ, T, T).

F ρ Ti Te, ,( ) Fi ρ Ti Te, ,( )= Fe ρ Te,( ).+

F ρ T T, ,( ) Fi ρ T T, ,( ) Fe ρ T,( )+=

F̃e

F̃e

Fi ρ Ti Ti, ,( ) F ρ Ti Ti, ,( ) F̃e ρ Ti,( ).–=

F̃e
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where Ce = ρdEe/dTe is the heat capacity per unit vol�

ume, quantity Ee is defined by formula (9), v2 =  +

3kBTe/me, me /2 = 5.5 eV is the Fermi energy EF;

EF/kB = 64 kK, and EF/� = 8.4 fs–1. Frequency ν is
equal to the sum of frequencies νei + νee of the elec�
tron–ion and electron–electron collisions. We
assumed that νee = (EF/�)(kBTe/EF)2 [58]. Frequency
νei was determined from the resistivity using reference
data [59]. It is νei [s–1] = 1.2 × 1011Ti(ρo/ρ)1.3 in the
solid phase and νei [s–1] = (0.34 + 2.7 × 10–4Ti)
(ρo/ρ)1.3 × 1015 in the liquid phase; here, ion tempera�
ture Ti is measured in kelvins and ρo = 19.3 g/cm3 is
the density of gold under normal conditions. Factor
(ρo/ρ)1.3 approximates the initial segment of con�
ductivity fall upon a decrease in density [60]. Since
our hydrodynamic code is based on wide�range mul�
tiphase EOS, we know the instantaneous phase com�
position at each Lagrangian particle. In the melting
layer, frequency νei was calculated using the formulas
for the solid and liquid phases taking into account
the volume fraction of phases in the two�phase mix�
ture.

2.2. Thermal Processes

There are three thermal processes: (i) laser energy
absorption in the gold skin layer of thickness of about
15 nm for the optical laser systems used with a photon

vF
2

vF
2 energy of 1–1.5 eV; (ii) transfer of the absorbed energy

to the bulk of the film by flux q in Eq. (5) due to elec�
tron thermal conductivity; and (iii) electron–ion tem�
perature relaxation equalizing electron and ion tem�
peratures, which is described by the term α(Te – Ti).
We disregard the thermal conductivity of the dielectric
substrate on the time scales under investigation. For
this reason, the thermal effects are localized in the
gold film. In the 2T conditions, the thermal conduc�
tivity is high, films [1, 28–33] are thin, and the film is
heated extremely rapidly. Accordingly, detailed
knowledge of the thermal conductivity is not very sig�
nificant for interpreting experiments [1, 28–33].8 The
values of electron–ion heat transfer coefficient α
and electron pressure Pe turn out to be more impor�
tant because relaxation lasts over an appreciable
time interval.

Figure 3 shows a typical example of numerous
calculations in various variants. The system of equa�
tions (3)–(6) of the 2T thermohydrodynamics is
solved numerically. It is well known [5] that at the 2T
stage in homogeneous bulk targets, an electron ther�
mal wave propagates with an ultrasonic velocity—a
“quasi�homogeneous” heating of the layer of thick�
ness dT takes place. In the case of thin films (df < dT),

8 Thermal conductivity is important for determining heating
depth dT and the thermomechanical ablation threshold for bulk
targets.

60
0

20

5

10

Te, kK

400

15

z, nm

t = 0.1 ps

0.3 ps

1.0 ps

Fig. 3. Propagation of thermal wave and rapid leveling out
of electron temperature Te over film of thickness df =

60 nm. Absorbed energy Fabs = 40 mJ/cm2. Point z = 0
corresponds to position of glass–gold contact prior to
arrival of USLP at contact with vacuum z = 60 nm. Glass
is on left, and gold is on right relative to z = 0. USLP illu�
minates film from right (from vacuum). Time t is measured
from USLP peak. USLP duration is τL = 100 fs, skin depth
is δ = 15 nm.
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Fig. 4. Leveling out of electron Te (zo = 60 nm, t) and ion

Ti(zo = 60 nm, t) temperature due to electron–ion relax�
ation; τL = 100 fs, δ = 15 nm. Temperature curves corre�
spond to interface between gold and vacuum. USLP
energy is absorbed in skin layer at this boundary. Maximum
Te = 16.7 kK is attained at instant t = 0.11 ps. Initial tem�
perature of gold and glass is 300 K. At t > 1 ps, the variation
of Te along normal to film is small (see text). This means
that spatial profile Ti(z, t) is approximately uniform along

normal to film. At instant tspall, film is detached from sub�
strate.
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this effect leads to a rapid leveling out of the electron
temperature over the space (see Fig. 3). Even by the
end of the first picosecond, the temperature difference

at the surfaces of the film decreases to 7% of the aver�
age temperature of the boundaries

ΔTe(t = 3 ps)/ (t = 3 ps) < 10–3. Narrow peaks in
Figs. 4 and 5 are due to the rapid heat transfer from the
skin layer of thickness δ = 15 nm to the film of thick�
ness df = 60 nm.

The process of equalization of the electron (Te) and
ion (Ti) temperatures is illustrated in Fig. 4. This pro�
cess is associated with coefficient α in energy equa�
tions (5) and (6). For thin gold films, the leveling out
of temperature Te(z, t) takes a much shorter time than
electron–ion temperature relaxation (see Figs. 3
and 4). It can be seen from Fig. 4 that temperature
relaxation continues for tens of picoseconds and does
not terminate by instant tspall = 35.3 ps of film spall
from glass (dynamic effects and film spallation will be
considered in the next section). Actual relaxation
occurs faster (Fig. 5). It is associated with the transfer
of absorbed energy Fabs (which is stored in the electron
subsystem) from electrons to ions. Even at instant t =
5.4 ps, these energies become equal, although the
electrons are hotter by 8 times (cf. Figs. 4 and 5). Nat�
urally, this is due to the small electron heat capacity, as
compared to 3kB at temperatures Te of a few
kilokelvins.

ΔTe t( ) Te zo
60 nm= t,( ) Te zo

0= t,( )–=

Te t( ) 1
2
�� Te zo 60 nm= t,( ) Te zo 0= t,( )+[ ],=

Te

Figure 6 illustrates the heating of the ion sub�
system. The bulk source of heat corresponds to the
term α(Te – Ti) in Eq. (6). After the rapid leveling out
of temperature Te (see Fig. 3), the power of the heating
source is approximately uniform at coordinate z. The
temperature profile Ti(z, t) is also affected by the term
Pidivu associated with work P dV and with the hydro�
dynamic motion.

In approximation (8) adopted above, we disre�
garded the effect of electron excitation on the elastic
constants. This means that melting curve Tm(P)
weakly depends on electron temperature Te. In addi�
tion, we carried out hydrodynamic computations
using the thermodynamic state equation. Conse�
quently, our calculations do not describe the kinetics
of melting. This is a considerable drawback if we are
speaking of the region near the melting threshold.
Spinodal Ts(P) of an overheated crystal lies 25–40%
higher than the melting curve [61]: Ts(P) ≈ (1.25–
1.4)Tm(P). For Fabs = 40 mJ/cm2 (see Figs. 3–6), the
ion temperature increases to values of about 2 kK (see
Fig. 6). Temperatures of about 2 kK correspond to the
neighborhood of spinodal Ts(P). At such overheating
amplitudes, kinetic effects are insignificant.

For high velocities of propagation of the melting
layer over the film material, a two�phase spatial region
with a mixture of the solid and liquid phases appears.
The local concentration of phases in the mixture grad�
ually changes with time. High rates of spatial expan�
sion of the region of transition of the crystal to the melt
are due to the high velocities of propagation of the
electron wave in the case of USLPs (see Fig. 3).
Accordingly, the electron temperature rapidly levels
out over the film thickness. Therefore, the ion sub�
system is heated almost uniformly over space (see
Fig. 6). Consequently, the phase composition of the
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Fig. 5. Energy pumping from electrons to ions at Te > Ti. It
can be seen that less than 22% of total energy Ee + Ei is left
in electrons at t > 15 ps. Time dependences of energies are
given for Lagrangian particle at gold–vacuum interface,
zo = 60 nm. Computation is made with parameters from
Figs. 3 and 4.
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to term Te – Ti in Eqs. (5) and (6). Parameters are same as
in Figs. 3–5.
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film material varies almost uniformly with time. The
situation is complicated because the extension of gold
in expansion waves leads to the emergence of regions
in which the substance intersects the binodal and
passes into a metastable state.

Figure 7 shows the phase diagram of gold in accor�
dance with wide�range EOS [36, 37, 53, 54]. The bin�
odal (curve 1) separates the two�phase region contain�
ing vapor and the condensed phase. The horizontal
segment with Ti = 1337 K on the binodal corresponds
to the triple point. The solidus (curve 2) separates the
crystal from the two�phase mixture of the solid and
liquid phases. The liquidus (curve 3) is the upper
boundary of the two�phase mixture of the solid and
liquid phases in equilibrium melting. Three Ti(ρ, t)
profiles of the ρ(zo, t) and Ti(zo, t) distributions over the
gold film thickness are superimposed on the binodal.
The instantaneous profiles are individual curves on
which temperature Ti on the phase plane in Fig. 7 rises
from the lower curve to the middle one and from the
middle curve to the upper one. Higher temperatures in
Fig. 7 are at the top. On a specific instantaneous pro�
file, hotter points in temperature Ti are located closer
to the interface between gold and vacuum (see Fig. 6).
This is due to the fact that in the variant corresponding
to Figs. 3–7, the film is heated by the laser from the
side of vacuum.

At instant t ≈ 10 ps, the Ti(ρ, t) profiles intersect the
two�phase solidus–liquidus strip. This means that the
entire gold film melts. It is interesting that the expan�

sion waves meet precisely on the interval of times cor�
responding to melting. The above arguments corre�
spond to the case when Fabs = 40 mJ/cm2. Two expan�
sion waves [14, 16] propagating over the film from the
interfaces with vacuum and glass meet approximately
at the middle of the film. Pay attention to the dip cor�
responding to the middle of the film in Fig. 6 on the
profile with t = 10 ps. Together with the decrease in
temperature Ti towards the film edges, this dip indi�
cates that two expansion waves have met.

The profiles contain segments on which the sub�
stance is in the stretched state with a negative ion pres�
sure Pi < 0. First, this is due to the fact that the always
positive electron pressure stretches the condensed
phase in the expansion wave (see the discussion in [55,
56, 62]). Second, the partial pressures (Pe, Pi) and the
total pressure (P = Pe + Pi) change due to energy trans�
fer from electrons to ions. Therefore, expansion waves
are not strictly self�similar waves. On segments with
Pi < 0, the substance passes to the metastable state.
The extension amplitude is insufficient for the rupture
of the condensed phase on our time scales. Segments
of profiles with Pi < 0 are located under binodal 1 in
Fig. 7. It should be noted that in the given variant of
the wide�range EOS, solidus 2 and liquidus 3 are con�
tinued into the metastable region [18].

The profile with t = 20 ps in Fig. 7 corresponds to
the stage at which the region of extension approaches
the contact interface between the film (gold) and sub�
strate (glass). For this reason, the more heated region
corresponding to gold outside the contact region lies
under the binodal. Only the region near the contact
remains in the compressed state. Then the expansion
wave propagating from vacuum reaches the contact
interface, on which the pressure decreases to zero. If
we disregard the cohesion between gold and glass, the
film spalls from the substrate at instant tspall, when
pressure Pc(t) at the contact vanishes (see Section 2.3,
devoted to dynamic effects).

Why does the spallation of the film occur at the
instant when Pc(tspall) = 0? The reason is quite simple.
If spallation did not take place, function Pc(t) would
become negative: Pc(t) < 0 for t > tspall. However, by
hypothesis, the cohesion stress Pcoh of gold on glass is
small. Let us consider situations with finite values of
the mechanical strength of the contact. Let function
Δv(Pcoh) describe the dependence of the velocity of
separation of the boundaries of glass and gold at spall
instant tspall determined by the equation –Pc(tspall) =
Pcoh. Note that velocity Δv(Pcoh) vanishes for Pcoh = 0
and increases with Pcoh. Therefore, for a low cohesion
stress of the film on the substrate (Pcoh ≈ 0), the gap
between the boundaries of the film and substrate at t >
tspall increases slowly.

The case of a film with df = 60 nm and Fabs =
40 mJ/cm2 is analyzed in Figs. 3–7. The film spalls
from glass at instant tspall = 35 ps (see table). After spal�
lation, the film flies in the molten state (see Fig. 7). Let
us find out how the value of the absorbed energy affects
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Fig. 7. Evolution of instantaneous ion temperature spatial
profile Ti[ρ(x, t), t] under action of bulk heating of ion sub�
system: (1) binodal; (2) solidus; (3) liquidus. Evolution
proceeds from the solid to melt. Profile corresponds to
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the phase state for other values of Fabs. The table con�
tains spall instants tspall disregarding the mechanical
strength of the glass–film contact. Apart from values
of tspall, the center�of�mass velocities vcm of the film
after its spallation from glass are also given in the table.
These data will be required in Section 2.3.

The table is necessary for determining the melting
threshold above which the film flies after spallation in
a completely molten state. The table can be used
instead of the curves shown in Fig. 7 for Fabs =
40 mJ/cm2 in the cases with other values of Fabs. It can
be seen from the table that fluence Fabs = 10 mJ/cm2 is
insufficient for melting. In this case, at the stage of the
dynamic interaction of the film with glass (t < tspall) and
after spallation (t > tspall), the film remains in the solid
state. Therefore, the fraction of the liquid phase is
zero. The amount of the liquid phase is given in the
table. The action of USLPs heats the metal to 0.9 kK.
The initial temperature is 0.3 kK. Temperature incre�
ment ΔT can be easily estimated by writing the energy
balance equation dfCΔT = Fabs. For df = 60 nm, C ≈
3kBno, no ≈ 6 × 1022 cm–3, and Fabs = 10 mJ/cm2, we
obtain ΔT = 0.67 kK. This estimate is approximately
10% higher than the true temperature difference
because the energy stored in the compression wave in
glass is disregarded. At instant tspall = 25 ps, the kinetic
energy of the film amounts to 0.3% of energy Fabs. The

kinetic energy (1/2)ρodf  of directional motion of
the center of mass at instant tspall = 25 ps amounts to
0.18% of energy Fabs.

For Fabs = 20 mJ/cm2, calculations using the equi�
librium equation of state show that gold attains the
temperature of the triple point even before its spalla�
tion (see table). In calculations with the equilibrium
equation of state, melting occurs faster than in the
case when the kinetics of melting is taken into
account. This effect is significant if the overheating is
small and does not reach the spinodal of the heated
solid phase. As mentioned above, the temperature on
the spinodal is 25–40% higher [61] than the temper�
ature on the melting curve. The variant with Fabs =

vcm
2

20 mJ/cm2 corresponds to small overheating. For this
reason, gold at the spall instant is in the state of an
overheated solid phase. Partial melting occurs later,
during the flight. The melting threshold lies between
20 and 30 mJ/cm2. For Fabs = 30 mJ/cm2, gold melts
even before spallation from glass. At this energy, the
instantaneous distribution of the phase composition
over the film intersects the two�phase melt–crystal
region in the time interval from 9 to 21 ps. The process
of intersection of the two�phase strip at Fabs =
40 mJ/cm2 is illustrated in Fig. 7.

In our formulation, one boundary of the film is
vacuum and the other boundary is glass. Analysis of
the dynamics of a free film with vacuum at both
boundaries was carried out in [63, 64] (see also [65]).
In these publications, the melting and ablation thresh�
olds were determined as functions of parameter
Fabs/dfno given in the table. The data in the table are in
conformity with the results obtained in [63, 64] for the
melting threshold.

2.3. Dynamic Behavior

The reason for the hydrodynamic motion of the
film and substrate is the thermal expansion of gold.
That is why we analyze dynamic phenomena after
thermal effects. In this section, we consider the forma�
tion and propagation of two expansion waves in the
film and the propagation of a compression wave in
glass. Two interesting new effects were discovered.
First, there is the “wake” of the superfast increase and
decrease of electron pressure Pe. The wake is formed at
the ultrashort stage of the superfast increase and
decrease in pressure Pe during the action of a USLP of
extremely short duration τL ~ 0.1 ps. After its forma�
tion, the wake travels from the boundary with the vac�
uum to the bulk of the film and then to the glass.

Second, the refraction and reflection of the expan�
sion wave propagating from the gold–vacuum inter�
face at the film–glass contact with a high ratio of
acoustical impedances is also of interest. The above
wake splits into two (transmitted and reflected) wakes
during refraction and reflection of the extension wave.
The process of reflection considerably affects the
accumulation of momentum of the film during the
dynamic interaction between gold and glass. The
acquired momentum determines the center�of�mass
velocity vcm of the film (see table) after it spalls from
the glass. The shape of the cupola formed by the sepa�
rated film depends on the energy distribution Fabs(x, y)
over the illuminated spot and function vcm(Fabs) (see
Fig. 2). The main goal of 1D hydrodynamic analysis is
the determination of temperature T(Fabs) and velocity
vcm(Fabs) of the spalled film. This information is
required for solving the 3D problem of film flight. The
3D problem is considered in Section 3.

Figure 8 shows the A, B, and C profiles of the rar�
efaction wave propagating from the interface with vac�
uum. In a condensed medium, the rarefaction wave

Phase composition, spall time tspall, and velocity vcm of
the center of mass of the film of thickness df = 60 nm after
spallation; no = 6 × 1022 cm–3 is the initial concentration of
gold atoms

Fabs, mJ/cm2 10 20 30 40

Fabs/dfn
o, eV/atom 0.17 0.35 0.52 0.69

tspall, ps 25 28.5 37 35

T(tspall), kK 0.9 1.337 1.7 2.4

Amount of liquid phase, % 0 20 100 100

vcm, m/s 12.6 25 53 70



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 1  2015

JET FORMATION IN SPALLATION OF METAL FILM FROM SUBSTRATE 25

has a form differing from its form in a gaseous medium
[4, 12, 13, 66]. This is due to the fact that in contrast to
gas, a condensed medium exhibits a finite resistance to
stretching, and the rarefaction wave contains a seg�
ment with decreasing pressure and density as well as
the segment with a constant flow (plateau). The pres�
sure on the plateau is equal to the pressure of the sur�
rounding medium. During expansion into vacuum,
the pressure on the plateau is zero, and the substance
on the plateau is located on the binodal shown in
Fig. 7. The corresponding profiles in Fig. 8 contain
segments 1 of sharp decrease in pressure and plateaus 3.
The smaller the wave amplitude, the more exact the
description of the flow by the expression of linear
acoustics, and the shorter and steeper the segment 1 of
pressure drop. Due to nonlinear effects, the steepness
of segment 1 decreases with time because the velocity
of sound is greater under higher pressure. The measure
of nonlinearity is the ratio of the pressure amplitude to
bulk modulus K (K = 180 GPa for gold). At 0.1 ps, the
plateau on the profile is not yet formed (see Fig. 8). In
the given situation, the pressure in the bulk of the film
varies with time due to the electron–ion heat transfer.
For this reason, instead of a regular plateau with zero
pressure gradient and zero pressure, we have segment
3 of “quasi�plateau” with a small pressure gradient
and a low pressure. The exact plateau and self�similar
segment 1 correspond to a steady�state homogeneous
situation [4, 12, 13, 66].

Pay attention to a peculiar dip 2 on the pressure
profiles in Fig. 8. It is located at the kink between seg�
ment 1 and the quasi�plateau and moves along with
this kink. This means that the dip runs over the char�
acteristics of the rarefaction wave and that it has been
formed at the interface with vacuum at instant t ≈ 0.

The propagation of the dip from right to the left can
also be traced from the local drops of ion temperature
Ti in Fig. 6, which shows that at instant t = 10 ps, the
dip reaches the middle of the film.

The dip resembles in appearance the “Z�wave”
consisting of a compression segment with P > 0 and an
extension segment with P < 0. Such a wave is typical.
It is always formed from thermomechanical action on
a thick target if its thickness is larger than dT. The x, t
diagram in [67, 68] (see Fig. 1 in [67] and [68]) shows
that segments with P > 0 and P < 0 propagate in pairs.
Pressure profiles with a pair of segments with P > 0 and
P < 0 are given in [65, 69, 70]. The formation of the
Z�wave is explained in [71]. The Z�wave is formed due
to the spatial inhomogeneity of the rapid (supersonic,
isochoric) heating of the substance at the boundary of
the target. The inhomogeneity is characterized by
thickness dT of the heated layer. Accordingly, the seg�
ments of the Z�wave with positive and negative pres�
sures have a length of the order of dT.

However, the thickness of the dip (length of the
interval along the z axis occupied by the dip) in our sit�
uation is much smaller than the inhomogeneity scale
dT, which exceeds the film thickness df = 60 nm. To
explain the reasons for the formation of the dip, let us
consider the time dependences of the velocity of the
interface with the vacuum and the total pressure max�
imum. These dependences are shown in Fig. 9. It can
be seen that the total pressure exhibits a short and
sharp peak, as well as the boundary velocity peak con�
nected with it. The same peak can be seen on the
curves for the electron temperature and energy in
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Figs. 4 and 5. The emergence of the peak of total pres�
sure P = Pi + Pe is due to the high rate of heat release
in the skin layer due to extremely short time of the laser
pulse action (τL = 100 fs). Then the electron contribu�
tion to the pressure sharply decreases due to rapid spa�
tial transfer of heat from the skin layer. This effect is
illustrated above in Fig. 3; it can be seen that leveling
out of electron temperature Te over the film takes only
one picosecond.

The decrease in the values of Te and Pe due to the
electron–ion heat transfer lasts much longer than
their decrease due to heat conduction and, hence, is
not responsible for the formation of the dip. It can be
seen from Fig. 9 that after the first sharp peak at t ≈ 0,
the total pressure increases over time intervals deter�
mined by the electron–ion heat transfer. This increase
is due to the fact that the ion Grüneisen parameter Γi ≈
2 is larger than its electron counterpart Γe ≈ 1 [35].
Accordingly, for a small change in the specific volume,
the total pressure increases as the energy is transferred
from the electron subsystem to the ion subsystem.

The extension of the substance at the boundary
appears due to the fact that the velocity of the bound�
ary was initially high and later decreased. For this rea�
son, deeper layers decelerate the rapidly flying layer at
the boundary. Therefore, the increase and decrease in
pressure (sharp peak in Fig. 9) lead to the formation of
a layer with extension and negative pressure. This situ�
ation corresponds to profile B and dip 2B in Fig. 8.
Then the pressure begins to increase, and the bound�
ary is accelerated relatively slowly (as compared to the
peak at t ≈ 0; see Fig. 9). The conditions for stretching
the material at the boundary disappear. However, the
wake of the dip created at the early stage (t ≈ 0) passes
to the extension wave and propagates over the charac�
teristics (hence, is preserved). In this case, the pressure

in the wake becomes positive due to the increase in the
total pressure and the acceleration of the boundary
(see the example with profile C and dip 2C in Fig. 8). In
this case, the shape of the dip is preserved. Its width
slowly increases due to the dependence of the velocity
of sound on the amplitude (nonlinear effect).

The peak, dip, and its wake in the expansion wave
running to the left in Figs. 6 and 8 were discovered
owing to the fact that system (3)–(6) was solved
numerically with the small spatial step of 0.02–
0.1 nm. The width of the dip is 1–2 nm. It is deter�
mined by a scale of the order of csτL. Such a fine effect
could hardly be detected in molecular dynamics
because for τL = 0.1 ps, the dip width is comparable
with atomic spacing.

In addition to the above rarefaction wave propagat�
ing from the vacuum interface, an rarefaction wave
propagating over the film from the glass–gold contact
also exists. The rarefaction wave propagates into the
gold and the compression wave propagates into the
glass. The z, t diagram in Fig. 10 shows the motion of
the waves schematically. The acoustic impedance of
glass Zg = 0.9 × 106 g/cm2 s is smaller than the acoustic
impedance of gold Za = 5.9 × 106 g/(cm2 s). The ana�
lytic acoustic solution in the linear approximation is
given in [72]. The numerical solution analyzed here is
much more informative than the analytic solution.
These solutions are compared in Fig. 11. In hydrody�
namic 2T calculations, aluminum is chosen as the
substrate because its equation of state is familiar and it
is close to glass in density and sound velocity; however,
the acoustic impedance of aluminum (Z = 1.4 ×
106 g/(cm2 s)) is 1.5 times higher. This circumstance
(passage to aluminum) increases the center�of�mass
velocity vcm by 1.4 times and decreases the velocity of
the contact by 8%. The analytic solution given in
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Fig. 10. Propagation of two counterpropagating expansion
waves sc and sv over gold film. Wave sc runs from the con�
tact and sv from vacuum boundary v, v1. Leading edge of
compression wave front in glass is denoted by sg.
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Fig. 11. Comparison of numerical (curve 1) and linear
analytic (broken lines 2 and 3) solutions. Instant t = 6 ps;
Fabs = 40 mJ/cm2, df = 60 nm, τL = 100 fs.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 1  2015

JET FORMATION IN SPALLATION OF METAL FILM FROM SUBSTRATE 27

Fig. 11 was calculated by solution of a Riemann prob�
lem at vacuum and glass boundaries. It is assumed that
for Fabs = 40 mJ/cm2, a USLP instantaneously pro�
duces pressure Po = 10 GPa, which is uniform over the
film (Po is the time�averaged pressure from Fig. 9).
We neglect here the leveling out of temperature Te over
the film due to heat conduction (cf. Fig. 3) as well as
the change in the total pressure due to energy transfer
to the ion subsystem and the difference between the
electron and ion Grüneisen parameters (see Fig. 9).

Under these assumptions, the analytic solution
consists of a set of two constant pressures shown in
Fig. 11. The positions and values of the constant pres�
sures vary with time. This occurs in accordance with
the diagram in Fig. 10. Let us briefly describe the ana�
lytic solution to grasp the qualitative features of the
numerical solution. Over time intervals 0 < t < ts/2 (ts =
df/cs ≈ 20 ps, cs = 3.05 km/s is the velocity of sound in
gold under standard conditions), we obtain the follow�
ing three values of pressure from left to right in the
analytic solution: pc = PoZ/(Z + Za), Po, and 0 (three
plateaus in Fig. 11). The values of pressure Po on the
middle segment and P = 0 on the right segment are
marked by symbols “+” and “0” in Fig. 10. The pres�
sure boundaries of rectangles (the density jump at the
contact also exists) move with the velocity of sound in
the corresponding medium. The velocity of contact is
uc = Po/(Z + Za); the velocity of the interface with the
vacuum is Po/Za.

On the time interval ts/2 < t < ts, we have the follow�
ing values of three pressures: pc,

(10)

and 0. The pressures on the second and third segments
are marked by symbols “–” and “0” in Fig. 10. It can be
seen that large tensile stresses (negative pressure) appear
in the triangular region marked by the minus sign in
Fig. 10. The extension layer (minus sign) expands with
time. The expansion towards the contact continues
until the sound wave sv in Fig. 10 reaches the film
boundary c. Coordinates z, t of the point of intersection
of trajectories sv and c in Fig. 10 are given by

(11)

It can be seen that in the linear regime Po � K, dis�
placement zsp is small as compared to film thickness df

(see Fig. 10). The measure of nonlinearity is the ratio
Po/K of the pressure to the bulk modulus for gold,
while the measure of symmetry in the film expansion is
the ratio of the impedances. In the case of symmetric
expansion, when both boundaries of the film are
boundaries with vacuum, we have Z/Za = 0 and vcm = 0.

It should be emphasized that the case of the sta�
tionary contact corresponds to an infinitely large

Pneg –Po pc+ PoZa/ Z Za+( )–= =

zsp

df

���� K
Po

���� 1 Z
Za

����+⎝ ⎠
⎛ ⎞ 1–

1–

,–=

tsp
ts

1 Po/K( )/ 1 Z/Za+( )–
��������������������������������������������� ts.≈=

impedance of glass; accordingly, Z/Za = ∞. The prob�
lem was considered with such a formulation in [1, 2].
In this case, the type of the dynamic interaction of the
film with the contact changes qualitatively. Instead of
rarefaction wave sc, which begins to propagate into
glass to the left and to gold to the right at instant t/ts ≈
0 (see Fig. 10), the substance at the contact remains at
rest with an invariable density until rarefaction wave sv
emitted from the interface with vacuum at instant t ≈ 0
arrives at the contact. This affects the flow in the whole
(e.g., the velocity of the interface with vacuum in
Fig. 9 does not decrease at instant t ≈ ts because this
decrease is associated with the arrival of rarefaction
wave sc from the contact). Velocity vcm of the center of
mass of the film after its separation from the glass turns
out to be much higher than the values given in the
table. This is due to the absence of the expansion
towards the glass.

Let us return to the case when Z � Za, which is
observed in experiments. At t = tsp + 0, the expansion
wave arrives at boundary c, and the extension of the
contact between the film and the substrate begins. If
we neglect the adhesion of gold to glass (Pcoh = 0), the
separation of the film from the substrate occurs at
instant tspall (spall instant). In Fig. 10, two divergent
trajectories g and a appear after spallation. The hydro�
dynamic flow profile in this cases can be divided into
five segments: (1) sg–tv, pressure is pc, tv is the trans�
mitted wave formed as a result of refraction of rarefac�
tion wave sv at the impedance jump at contact c;
(2) tv–g, pressure is zero; (3) a–rv, pressure is zero;
(4) rv–rc, pressure Pneg (10) is negative; and (5) rc–
v1, pressure is zero.

Let us return to the description of the numerical
solution. Rarefaction waves sc and sv in Fig. 10 meet
at the middle of the film at instant t ≈ ts/2 ≈ 10 ps. The
beginning of the sharp pressure drop (see Fig. 9) is
associated with the meeting of waves sc and sv. After
its encounter with wave sv, rarefaction wave sc contin�
ues its motion to interface v with vacuum. The sc wave
reaches the vacuum interface at instant t ≈ ts. This
instant separates segments v and v1 of the trajectory of
the interface with vacuum, in which the velocity of the
interface has different signs. At instant ts ≈ 20 ps, the
velocity of the interface with vacuum begins to
decrease (see Fig. 9). Approximately at the same
instant t ≈ ts, expansion wave sv propagating from the
vacuum interface reaches the contact (see Fig. 10).

The evolution of the profiles prior to the meeting of
the sc and sv waves is illustrated in Fig. 12. The situa�
tion corresponds to simple evolution of the pressure
jump decay between gold under pressure and glass in
which the pressure is zero. The energy transfer to ions
from bulk source α(Te – Ti) in Eq. (6) increases total
pressure P (see Fig. 9) due to the difference in the
Grüneisen parameters. The electron–ion relaxation
continued approximately for 5–15 ps (see Fig. 5) in
energy and about 35 ps in temperature (see Fig. 4).
The increase in pressure with time substantially
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Fig. 12. Slow expansion of film and propagation of the
compression wave into glass. Transformation of left (sc)
and right (sv) expansion waves before their meeting
approximately at middle of film. Fabs = 40 mJ/cm2.

changes the numerical solution as compared to the
analytic solution (see Fig. 11). In the regions contain�
ing the plateau on the right and left sides in the analytic
solution, we observe the distributions of P increasing
along the z axis. The increase in P in the direction to
the high�pressure layer inside the gold film is due to
the increase in P with time in the high�pressure layer.
The kink of the gradient of P at contact c is associated
with the density jump at the contact. The accelerations
of particles on the left and on the right of the contact
are identical, but the densities are different: the ratio of
gradients of P is equal to the ratio of densities; i.e., the
gradient in gold is steeper.

Let us consider the interaction of the sv wave with
contact c. In linear acoustics, the interaction at tsc ≈
20 ps (11) instantaneously leads to spallation. In the
actual situation, spallation occurs later; e.g., for Fabs =
40 mJ/cm2, we have tspall = 35 ps (see table). This is due
to blur of the wavefront and the existence of a quasi�
plateau with a nonzero pressure (see Fig. 8), on which
the wavefront is marked by digits 1 for three instants of
time, and the quasi�plateau is denoted by digits 3. In
linear acoustics, the reflection sv  c leads to the
emergence of the tv wave transmitted to glass, a dis�
continuity with banks g and a, and reflected wave rv
(see Fig. 10). The sv wave has two important acoustic
characteristics. This is the sv characteristic running
ahead and the characteristic at the kink between the
front and the quasi�plateau (see Fig. 8). The charac�
teristic at the kink is marked by digit the 2 in Fig. 8.

Figure 13 illustrates the passage of the sv wave
through contact c for Fabs = 40 mJ/cm2. The positions
of contact c at instants of 19, 25, 30, and 35.3 ps are
marked by circles. At 19 ps, the right rarefaction wave
(see Fig. 12) reaches the contact. At this instant, char�

acteristics sv and 2 of this wave are on the right of the
contact. The kink of gradient ∇P still accelerates the
contact. Characteristics sv and 2 border the steep seg�
ment of the expansion wave propagating from right to
left from the interface with vacuum (see Fig. 12). Fur�
ther, the characteristic sv crosses the contact and is
transformed into a transmitted characteristic tv (see
Fig. 13). At 25 ps, the characteristic 2 comes close to
the contact. On the profile corresponding to 30 ps, the
singularities associated with the transmitted charac�
teristic t2 and reflected characteristic r2 are indicated.
Characteristics t2 and r2 are generated by the charac�
teristic 2. When steep segment sv–2 passes through
the contact, pressure on it rapidly decreases. There�
fore, the acceleration of the contact changes for its
deceleration. Accordingly, gradient ∇P changes sign.
However, the absolute value of the pressure gradient in
gold is higher as before because the density of gold is
higher than the density of glass.

Let us calculate velocity vcm of the center of mass of
the film after its spall from glass. Prior to the action of
a USLP, the momentum of the film + glass system is
zero. If the film has detached from the substrate, the
total momentum is zero as before (we disregard the
momentum of absorbed photons). However, the
momentum of the film
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Fig. 13. Passage of steep segment sv–2 and quasi�plateau
of expansion wave propagating from interface with vacuum
through glass–gold contact. Four profiles (from right to
left) correspond to instants t = 19, 25, 30, and 35.3 ps. To
simplify figure, only a piece near contact is left in profile at
35.3 ps. At instant 35.3 ps, pressure on contact decreases to
zero, after which boundaries of glass and gold slowly
diverge.
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becomes a finite quantity given by

Therefore, velocity vcm = i/m is determined by the
pressure on the contact; here,

is the mass of the film.
The integrand function pc(t) is shown in Fig. 14. In

the linear case, the momentum and velocity are pcts
and vcm = (Zg/Za)uc, where uc = Po/(Zg + Za). In the
linear case, function pc(t) has a rectangular shape. This
function is zero for t > tsp ≈ ts ≈ 20 ps (11) (see Figs. 10
and 11). In the actual situation, instead of the rectan�
gle in Fig. 14, we have an increasing function with val�
ues decreasing after characteristic sv intersects the
contact. The intersection occurs at instant tsp ≈ 20 ps.
Between points sc and 2 in Fig. 14, pressure pc(t)
decreases sharply. This segment corresponds to the
passage of the steep segment sv–2 of the rarefaction
wave propagating from vacuum (see Figs. 11–13).
Then the quasi�plateau of rarefaction wave sv arrives
at the contact. This corresponds to the segment
between points 2 and tspall. The value of tspall for Fabs =
40 mJ/cm2 is given in the table. As a result, the film
acquires velocity vcm given in the table. The curve in
Fig. 14 resembles the curve for the velocity of the
interface with vacuum in Fig. 9. However, the decrease
in velocity in Fig. 9 is determined by the rarefaction
wave propagating from the contact, whereas the pres�
sure drop in Fig. 14 is determined by the rarefaction
wave propagating from the interface with vacuum.

3. BLISTERING OF THE FILM 
ON THE SUBSTRATE

3.1. Capillary Effects

The above computations based on the 1D hydrody�
namic 2T code play an exceptional role. These com�
putations clarify the mechanism of spallation of a
metal film from the dielectric substrate and determine
the initial velocity field vcm(x, y) = vcm[Fabs(x, y)]. The
code approximates system of equations (3)–(6). An
important parameter is laser beam diameter RL. This
parameter is connected with non�one�dimensional
effects considered in the present section. The intensity
distribution in the direction perpendicular to the beam
axis decreases with increasing distance from the beam
axis. For the function approximating the intensity dis�
tribution in the plane perpendicular to the beam axis,
we can take any cupola�shaped function (e.g., the
Gaussian function). The intensity distribution over the

film surface is proportional to exp(–x2/ ) in the case

i pc t( ) t.d

∞–

tsp

∫=

m ρ xd

z
o

0=

z
o

60=

∫ ρodf= =

RL
2

of the strip beam, exp(–r2/ ), r2 = x2 + y2 for an axi�

symmetric beam, and exp[–(x2 + y2cos2 β)/ ] in the
case of an axisymmetric beam incident on the target at
angle β between the normal and the beam axis.

Let us consider the case where the film in the heat�
ing spot has melted under the action of a USLP. In this
case, the surface tension of the hot melt affects the
dynamics of the flight of the film after its spallation
from glass. The surface tension coefficient is a fixed
(invariable) function of the temperature of the liquid
phase (Fig. 15). The same property (invariability) is
exhibited by density ρo of gold under standard condi�
tions. Therefore, it may appear that the effect of coef�
ficient σ on the dynamics is determined by variable
quantities RL, df, and vo (for vo, we take the center�or�
mass velocity of the film on the laser beam axis; see

table).
9
 However, radius RL cannot be used as a param�

eter. The capillary scale of velocity v
σ
 can be deter�

mined by comparing the surface energy and the kinetic
energy of the film:

(12)

where μo [g/cm2] = ρodf is the surface density of the
film before it starts moving. Radius RL does not appear

9 As mentioned in Section 1, the spallation of the film on the one
hand and its flight on the other hand can be considered sepa�
rately. Indeed, the time scales of these two processes differ by
three orders of magnitude. The duration of the former process is
ts ~ 10 ps, while the duration of the latter process is RL/vo ~
10 ns; i.e., RL/vo � ts.
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Fig. 14. Acceleration of center of mass of film due to pres�
sure of glass on film via glass–gold contact. First, total
pressure P = Pe + Pi increases due to electron–ion relax�
ation. Then characteristic sv arrives at the contact, and
pressure pc(t) begins to decrease rapidly (see also Fig. 13).

Fabs = 40 mJ/cm2.
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in parameter v
σ
. Factor 2 appears in front of σ in the

first relation in (12), because after spallation from
glass, the film has two surfaces. Thus, if we disregard
cooling due to heat conduction along the metal sur�
face and freezing of the melt, the only dimensionless
parameter controlling the motion is the dimensionless
velocity

(13)

If we disregard the rupture of the film (assuming
that the film is infinitely stretchable), the surface ten�
sion always terminates the motion of the separating

film and returns it to the substrate even when  � 1
(13) if the kinetic energy at the initial stage dominates.
The shape of the film on the substrate is shown in
Fig. 2. Indeed, surface energy increases indefinitely
with increasing film surface, while the kinetic energy is
limited.

Then what is the role of parameter RL, if it does not
appear in the definition of parameter (13)? For a fixed

value of  (13), the evolution of the swelling (“bump�
ing”) (see Fig. 2) is the same in the dimensionless
coordinates

(14)

i.e., for identical parameters  at identical instants ,
the bump size is just proportional to RL.

V̂o vo/v
σ
.=

V̂o

V̂o

x̂ x
RL

�����, ŷ y
RL

�����, ẑ z
RL

�����, t̂ t
RL/v

σ

������������,= = = =

V̂o t̂

Let us write the equation of motion of the film in
dimensionless form:

(15)

System of two equations (15) corresponds to the axi�
symmetric geometry. The z axis in Fig. 2 is the rota�
tional axis and r is the cylindrical radius (i.e., distance

= r/RL to the z axis). The film is assumed to be infi�
nitely thin. Lagrangian coordinate a runs over the arc
of the film (  = a/RL). Coordinate a is defined as the
initial value of radius r at which a material particle of
the film on the substrate was located before the film
started moving. Before the motion begins, the surface
of the substrate coincides with the plane z = 0.

In dimensional variables, system (15) has the form

(16)

where ξ = {r, z} and

is the radius of curvature of the curve that forms the
axisymmetric bulging surface of the film in Fig. 2 upon
rotation about the z axis; r' = ∂r/∂a. This planar curve
lies in the rz plane. The second radius of curvature in
Eq. (16),

corresponds to the planar curve lying in the intersec�
tion of plane N and the surface of revolution; cos α =
dz/ds, α is the angle between the z axis and the tangent
to the film. This tangent lies in the rz plane. Plane N
passes through the normal vector n to the film surface
and the perpendicular to the rz plane. Radius Rt is
equal to the distance from a point on the film to the z
axis along normal n.

The term on the left�hand side of Eq. (16) is asso�

ciated with the inertia force (2πa da)μo  of a ring of
mass (2πa da)μo, where 2πa da is the area of this ring
on the substrate surface prior to the action of a USLP.
The normal to the point with coordinates r, z on the
film surface in Fig. 2 is directed outwards (to the bulge
of the film) Accordingly, the pressure difference pro�
duced by the surface tension is directed inwards and
decelerates the film. This corresponds to the minus
sign on the right�hand side of Eq. (16). The term on
the right�hand side contains the force (2πr ds)p of cap�
illary pressure p exerted on the ring of area 2πr ds. Fac�
tor (1/μo)(r/a)s' on the right�hand side of Eq. (16) is
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Fig. 15. Surface tension σ on a segment of vapor–liquid
binodal (i.e., on boiling curve; see Appendix). Triangles
and bullets correspond to experimental data from [73, 74].
Squares are values of σ according to gold potential [70]
calculated in embedded atom model (EAM). Curves are
approximations of form σ(T) = σ3[(1 – T/Tc)/(1 –

T3/Tc)]1.25 [75], T3 = 1.337 kK and Tc = 7.756 kK are
temperatures at triple and critical points, σ3 = σ(T3).
EAM potentials are known to give noticeably lower values
of coefficient σ.
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formed by the mass (without 2π) μoada and area (with�
out 2π) r ds of the ring. The flying film has two free sur�
faces; for this reason, factor 2 appears on the right�
hand side of Eq. (16).

In the 2D case, system (15) assumes the form

(17)

In the planar geometry, the bulge has the shape of a
strip along the y axis. Accordingly, curve z(x, t) lies in
the plane y = const. Instead of radius r(a, t) of the cyl�
inder, system (17) contains coordinate x(a, t).

3.2. Results of Integration 

The nonlinear system of partial differential equa�
tions (15) was solved numerically with initial and
boundary conditions. The initial conditions have the
form

(18)

These conditions distribute material particles uni�
formly over the substrate plane on segment 0 < a < RL

and specify the initial distribution of velocity ∂z/∂t
directed normally to the substrate. As mentioned in
Sections 2 and 3, we can disregard time intervals ts ~
20 ps, over which the film is spalled from the substrate, as
compared to time intervals RL/v

σ
 ~ 1 [μm]/100[m/s] ~

10 ns, during which the film moves over distances of
the order of RL. Therefore, time in conditions (18) is
measured from instant t = 0. The problem of the action
of a USLP has the boundary conditions

(19)

(20)

which correspond to the central Lagrangian particle
(a = 0) on the z axis and to a finite curvature of the film
at the vertex (19). In addition, the outermost
Lagrangian particle (a = RL) is fixed at point r = RL,
z = 0 (20). Systems (15)–(17) are of the fourth order
in time and of the fourth order in the coordinate.
Therefore, eight initial and boundary conditions
(18)–(20) are required for their solution.

Systems (15)–(17) were analyzed in recent publi�
cation [72]. In contrast to that publication, we present
an important classification of solutions depending on

the key parameter  (13), while in [17] several indi�
vidual cases were considered, in which the “turn�over”
of the solution takes place, and a droplet is generated
at the top of the bulge. The inaccuracy of the result in
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∂â
�����,= =

R̂p
k3

z''ˆ x'ˆ x''ˆ z'ˆ–
�������������������, k x'ˆ 2 z'ˆ 2+ , x'ˆ ∂x̂

∂â
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[72] is corrected (expression (15) for parameter C must
contain a factor of 1/2). In addition, new molecular�
dynamics (MD) calculations in planar geometry cor�
responding to Eqs. (17) are carried out. Most impor�
tantly, we present for the first time the results of MD
simulation in the axisymmetric geometry, which
allows us to explain theoretically the origin of the
recently detected effect of formation of a backward jet
(see Fig. 7 in [28]).

For small values of  � 1 (13), the film returns to
the substrate after the departure to a small distance
from it. For this reason, a droplet at the top of the
cupola has no time to be formed. The formation of the

drop and jet at the top occurs when  = . Before

writing the expression for  for the planar and cylin�

drical geometries, let us analyze the case when  >

. Comparison of MD simulations with the solution
of system (15) in this case is illustrated in Fig. 16. The
parameters of calculations are as follows. Axisymmet�

ric laser action:  = 2.60177 (13); RL = 300 nm; vo =
300 m/s; and μo = 1.64356 × 10⎯5 g/cm2. Prior to the
action of the USLP, the film of an fcc gold crystal has a
thickness of 23 lattice constants equal to 0.429434 nm
under standard conditions (p = 0) for our EAM poten�
tial. In the MD simulation, the Langevin thermostat
with zero flow velocity, which forces the bulge edge to
stay on the substrate, permanently operates in the
region bounded by a circle of radius r = 300 nm and a
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Fig. 16. Comparison of large�scale (0.2 × 109 particles)
MD simulation and results of integration of system (15):

(curve 1) at instant t = 1.846 ns,  = 0.70954 ≈ 0.71;
curves 2 and 3 are lower and upper boundaries of the film
according to MD calculations. Parameters of calculation
are given in text. Level z = 0 corresponds to substrate sur�
face prior to the USLP action. For inertial curve 4, σ = 0
(the film flies by inertia); the remaining parameters are
same as in solution of system (15).
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620 × 620 nm square. In calculations, we used
191832512 ≈ 200 × 106 atoms. The surface tension of
546 dyne/cm for system (15) was the same as in the
MD simulation (see Appendix and Fig. 15). In the
MD simulation, the temperature of the gold melt was
1600 K and the density was 16.55 g/cm2; the substance
is on the binodal in this case (see Appendix). After
melting by the thermostat and before the beginning of
motion, the film thickness was 9.9 nm. In the
MD simulation, we assume that the substance is
between the upper and lower boundaries of the film
(see Fig. 16).

Comparison of MD data with the results obtained
by numerical integration of system (15) shows good
agreement between them even after the beginning of
formation of a droplet at the top (see Fig. 16). In sys�
tem (15), the droplet corresponds to a loop at the ver�
tex. Figure 16 illustrates a late instant, before which
capillary forces have considerably decelerated the
cupola (cf. curves 1 and 4). Satisfactory agreement
between the MD simulation and calculation based on
system (15) is preserved even over large time intervals,
when the mass of the droplet becomes quite large
(Fig. 17).

We are speaking of comparison of the film shapes
(in the MD simulation and in accordance with
Eqs. (15)) outside the central region where the jet
(directed upwards) and the counterjet (directed down�
wards) are located. The computation (based on the
solution of system (15)) gives values of 26% and 40%
for the droplet mass at instants t = 2.86 ns and t =
3.81 ns, respectively. The curves in Fig. 17 correspond
to these two instants. The percentage shows the ratio
of the droplet mass to the total mass of the film inside

the circle of radius RL (see condition (20)). To deter�
mine the mass of the droplet from the solution of sys�
tem (15), we must find point adrop at which function
r(a, t) vanishes for the first time upon a variation of
Lagrangian coordinate a from 1 to ddrop. At this point,
self�intersection of the film on the z axis takes place.
An example of self�intersection is given in Fig. 16 in
the form of a loop at the top of the cone�shaped
cupola. The shape of the film is specified by paramet�
ric functions r(a, t) and z(a, t), which are solutions to
system (15). At instant t = 1.846 ns, corresponding to
Fig. 16, the coordinate of the self�intersection point is

 = 0.2285391, and the mass of the droplet (loop)

divided by the total mass is π /π  = 0.2285392 =
5.22%. The value of adrop determines the coordinate at
which the curves of model (15) in Fig. 17 intersect the
z axis.

Before the beginning of motion under the action of
a USLP, the film was in contact with the z axis for a =
0. Lagrangian particle a = 0 is the only particle on the
z axis after the beginning of motion and up to instant
tdrop at which self�intersection takes place. In model (15),
a nucleus of a drop appears at instant tdrop at the top of
the cupola. Then the nucleus develops into a jet and a
counterjet as follows from the MD simulation. At t >
tdrop, the film covers the segment from the z axis to the
point of attachment r = RL due to a decrease in the
number of Lagrangian particles a: adrop < a < RL. Thus,
due to the expansion of the cupola during its upward
motion and due to loss of the substance to the droplet,
the film is stretched. Accordingly, its thickness
decreases. It should be noted that in the case illus�
trated in Fig. 17, ballooning turns over the motion
towards the substrate. In this case, the accumulation of
the substance in the droplet reduces the film thickness,
while the reduction of the area of the lateral surface of
the cupola produces the opposite effect.

Figure 18 shows the mass distribution over radius r.
In model (15), we have

(21)

where h is the film thickness equal to distance between
two points lying on the normal vector to the film sur�
face, one of which belongs to the upper boundary of
the film, and the other to its lower boundary; Δz is the
difference in heights zhigh(r, t) and zlow(r, t); μo is the
mass per unit area of the film prior to the USLP
action; and ρ is the density of gold in the film (at the
melt temperature of 1.6 kK, this density is
16.55 g/cm3). The above formulas follow from the
mass conservation law 2πa daμo = 2πr dsρh. The film
thickness sharply increases in the central zone (see
Fig. 18), where the circular droplet is gradually trans�

âdrop
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Fig. 17. Upper and lower groups of three curves corre�
sponds to t = 2.86 and 3.81 ns, respectively. The zones of
the central jet and counterjet are present. Film at indicated
instants has passed through stop stage and moves back to
substrate. Numbers on curves and parameters of problem
are same as in Fig. 16. Concave part in central zone of the
lower curve 2 corresponds to incipient counterjet.
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formed (see Fig. 16) into a jet and a counterjet
extended along the z axis.

The variation of the film thickness with time is
illustrated in Fig. 19. It can be seen that the thickness
increases towards the cupola axis r = 0. The cupola
assumes a conical shape (see Figs. 16 and 17). The
cone height (disregarding the jet) decreases from 0.4 to
0.15 μm over time interval 2–4 ns. The substance of
the film flows with time to the central zone (the jet in
this zone operates as a mass sink for the remaining part
of the film). The flow is determined by the sign of
deceleration (directed downwards to the substrate and
to the z axis). As noted above, at the stage of the back�
ward motion of the cupola to the substrate, the mass
sink is acting in the direction of the decrease in the
film thickness, while the cupola area decreases in the
opposite direction.10 On the segment of evolution
depicted in Fig. 19, the mass of the central formation
increases from 5 to 40% (see above). The cone area
decreases thereby from 0.5 to 0.3 μm2.

Apparently, the decrease in the cupola surface area
slightly compensates the flow of the substance to the
axial zone. Therefore, over a time interval of 2 ns (from
t = 1.846 to 3.81 ns), the film thickness has changed
insignificantly. However, the film thickness, compared
to the initial value h ≈ 10 nm, has decreased almost by
half. By instant t = 3.81 ns, the minimum of the thick�
ness has been displaced to the cone base (see Fig. 19).

10 These processes take place until the freezing of the cupola film
begins. Heat removal and recrystallization processes should be
analyzed separately.

This probably means that if the film does not crystal�
lize, the spall ring is closer to the substrate (cf. [33]).
The liquid cupola detached from the substrate is grad�
ually transformed during its flight from a complex for�
mation to a spherical drop [72]. This process is con�
trolled by dissipation of capillary oscillations. At
instant t = 3.81 ns illustrated in Fig. 19, the minimal
film thickness is approximately 4 nm. The rupture of
the liquid film takes place when its thickness decreases
to about 1 nm (3–4 atomic spacings). This conclusion
follows from the analysis of nanobulging in planar
geometry [72] and from the analysis of foaming and
breakup of foam in molten metals [5, 55]. Capillary
effects, nucleation processes, and foaming in the case
of a large spot of heating (RL ~ 1 μm) have much in
common. Foaming of the melt and freezing of foam
were assumed in [5, 55, 76–78] to be the mechanisms
of formation of chaotic structures observed in experi�
ments [79–81].

3.3. Jet and Counterjet

Figure 20 shows the kinematics of the ascent and
descent to the substrate of the central zone of the
cupola. The figure illustrates the growth of the jet and
the generation of a counterjet. The z(0, t) curve shows
how a material particle, which was at the center of the
heating spot prior to the USLP action, moves away
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Fig. 19. Difference Δz (two upper step curves) from the
MD computations and film thicknesses h in accordance
with relation (21). Parameters are same as in Fig. 16. Dif�

ferences Δz and thicknesses h are given at two instants  =

0.70954 (t = 1.846 ns) and  = 1.46594 (t = 3.81403 ns).
Digits on curves give rounded values of dimensionless time

 (14). Dependences Δz(r) and h(r) gradually converge
(cf. pair Δz and h at instants t = 1.8 ns and t = 3.8 ns). This
is due to increase in cone angle with decreasing distance
between film and substrate (see Figs. 16 and 17).
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Fig. 18. Curves Δz = zhigh(r, t) – zlow(r, t) give the differ�
ence in heights of upper and lower surfaces along the z axis
at instant t = 2.86 ns. Curve 1 corresponds to MD compu�
tation, and curve 2 corresponds to system (15). Film thick�
ness h (curve 3) is plotted in accordance with relation (21).
Parameters are same as in Fig. 16.
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Fig. 20. Evolution of central zone including formation and
evolution of intense axial formation. During nucleation,
this formation has the form of a droplet at top (see Fig. 16).
Then the droplet is transformed into jet and counterjet.
The jet moves high above cupola surface with time. At
instant t = 3.8 ns, the jet velocity is ∂zhigh/∂t = 120 m/s. It
should be recalled that vo = 300 m/s (see parameters in
Fig. 16). Curves 1—z(a = 0, t); 2—zdrop(t); 3—zlow(t);
and 4—zhigh(t). Dark squares correspond to instants per�
taining to Figs. 16–19.
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from the substrate in model (15). Soon after the self�
intersection of the curve describing an infinitely thin
film on the rz plane, trajectory z(0, t) losses its physical
meaning because film thickness cannot be disregarded
in this zone. The curve zdrop(t) in Fig. 20 corresponds
to the trajectory of self�intersection point adrop(t),
r[adrop(t), t] = 0, and zdrop(t) = z[adrop(t), t]. At this
point, the thin film bulge in the form of a cupola inter�
sects the z axis. Figure 16 clarifies the difference
between points z(0, t) and zdrop(t)—these points corre�
spond to the upper and lower points of the loop. The
instantaneous position of the film arc is specified by
the solution r(a, t), z(a, t) to system (15). Here,
parameter a runs through the arc. The point of inter�
action of arc r(a, t), z(a, t) with the z axis is shown in
Figs. 16 and 17. In Fig. 20, the beginning of the curve
zdrop(t) is marked by a vertical segment. This point will
be referred to as the instant of generation of the drop
at the vertex of the cupola. The coordinates of the gen�
eration point are tdrop = 1.571 ns and zdrop = 0.3663 μm.

Let us compare the results of the MD simulation
with the solution to system (15). In the MD computa�
tion, the drop is generated gradually. This corresponds
to an increase in the distance between curves 3 and 4 in
Fig. 20 along the z axis. The nucleation stage and sub�
sequent evolution in the MD simulation are in confor�
mity with the solution to system (15) (curves 1 and 2 in
Fig. 20). As noted above, in the absence of film rup�

ture, capillary forces always terminate the growth of
the cupola. For the chosen parameters of the problem,
the maximal separation of the cupola (0.37 μm) is
attained at an instant of 1.8 ns at the return point of the
motion to the substrate. Three squares in Fig. 20 mark
the instants corresponding to Figs. 16–19.

Figure 21 shows how the amount of gold increases
in the central zone. The final point of the graph is
instant t ≈ 5.2 ns, at which the self�intersection point
in Fig. 20 arrives at the substrate. Dimensionless time

 in Fig. 21 is laid along the abscissa axis. Dimensional

time is t = 2.60177  ns. The substance that has passed
from the film to the central zone is mainly spent on the
formation of a powerful jet (Fig. 22). The diameter of
the approximately cylindrical jet varies slowly, com�
pared to its length. It amounts to approximately 50 nm
(i.e., about 10% of the diameter of the circle in which
the film spalls from the substrate).

Curve 3 in Fig. 17, which marks the outer boundary
of the cupola, is removed. This is done to simplify
Fig. 17. As a matter of fact, Fig. 17 illustrates the evo�
lution of the cone�shaped cupola. The axial formation
over its entire height is shown in Figs. 20 and 22. Let us
consider the axial structure. In Fig. 22, the drop is
located the upper part of the jet. The increase in the
total length of formation, zhigh(x = 0, t) – zlow(x = 0, t),
is shown in Fig. 20. At the initial stage (t ≈ 1.6 ns) of the
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Fig. 21. Increase in mass fraction in percent. We are speak�
ing of mass Mz(t) which has passed by instant t through
self�intersection point to axial zone in model (15). Quan�
tity Mz is normalized to the mass  of film in the circle

of radius RL. At later instants, Mz is mainly mass of the jet
emergent above cupola. In model (15), nucleation of axial
formation occurs at the instant of self�intersection. This
instant is marked by vertical segment in Fig. 20. Before the
beginning of intersection, mass Mz(t) is zero. Parameters
are the same as in Fig. 16.
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flow of the substance to the z axis, the axial formation
has the shape of a drop at the vertex of the cupola (see
Figs. 16 and 20). At the next stage, the length of the jet
increases much more rapidly than the length of the
counterjet shown as a hump on the inner surface of the
cupola in Figs. 17 and 22.

Cumulative effects are well known in engineering
[82, 83]. Glancing collision of plane plates or the con�
vergence of a cone to the axis of an incompressible liq�
uid leads to the emergence of a cumulative jet
(Fig. 23). An analogous situation takes place in our
problem. The vertex of the counterjet has an apprecia�
ble velocity vaj = 120 m/s directed downwards. Veloc�
ity vcup of the substance in the cupola film close to the
z axis is directed almost horizontally towards the axis;
the vertical component of velocity of these particles is
small. Since the film is located at an angle to the z axis,
and velocity vcup of the film is directed to the axis, the
point of intersection of the generators of the cone�
shaped cupola moves downwards. It turns out that the
velocity of the point of intersection of the generators is
approximately equal to the velocity of the tip of the
counterjet. For this reason, in spite of considerable

velocity vaj of the tip of the counterjet, the later devel�
ops slowly (cf. Fig. 7 in [28]). A longer counterjet is
probably formed when the cupola begins freezing, and
its velocity vcup decreases. Nevertheless, it follows
from Figs. 17 and 22 that an indication of the counter�
jet formation undoubtedly exists.

3.4. Classification of Solutions

The role of the classifier of solutions is played by

the dimensionless velocity  (13). There are three
types of solutions, corresponding to small, medium,

and large values of this parameter:  � 1,  ~ 1, and

 � 1. Let us consider them in this order. For small
values of velocity (13), the film separated from the
substrate ascends to a small height z � RL, z � 1, and
then a turnover takes place, and the film returns to the
substrate at instant tback (see Fig. 24) with the departure
and return of the axial point z(a = 0, t) of the cupola to

the plane z = 0 when  = 0.6. For small amplitudes

, the film stretched on the circle of radius RL could
perform capillary oscillations if the substrate were not
present. Instant tback of the impact of the film against
the substrate is equal to approximately half the period
of oscillations at the lower mode. Figure 24 shows

dependences z(0, t; ) at various values of velocity 

(13). Even for small values of  � 1, the z(t) curve
differs from a sinusoid, because function (18) specify�
ing the initial distribution of velocity z(a, t = –0) is
proportional to the square of the cosine and is not an
eigenmode of the problem of film oscillations on the
circular contour. The maximal height of the film above
the substrate is attained at instant tmax ≈ tback/2, approx�
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Fig. 22. Morphology and evolution of axial formation in
axisymmetric case at late stages of MD simulations. Distri�
butions of vertical velocity in a thin cross section passing
through rotational axis of jet (r = 0) are shown. Right and
left halves correspond to instants t = 3.88 and 2.86 ns,
respectively. Upper point of jet on the right (left) moves up
with a velocity of +131 m/s (+139 m/s), while lower point
moves down with velocity of –164 m/s (–134 m/s).
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Fig. 23. Collision of plates A and B (planar geometry) or
convergence of cone walls A and B to cone axis (axisym�
metric case). Due to collision, cumulative jet J and pestle
P appear. Arrows indicate directions of velocities of plates
in laboratory system of coordinates.
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imately equal to a quarter of the period. In dimension�
less coordinates t/(RL/v

σ
), we have  ≈ 1.

The limitation z � 1 corresponds to the linear the�
ory of perturbation amplitude. Let us carry out the lin�
ear analysis. This will allow us to calculate the above�
mentioned instants  of attainment of the maxi�
mum height and tback of impact of the film against the

substrate at the limit of small amplitudes  � 1. It
will be shown that these instants attain constant values

at the limit   0. In addition, the linear solution
has the following merits. The film begins moving from
the plane z = 0, when the condition z � 1 is observed.
Therefore, the linear solution describes the initial

stage of the evolution for arbitrary values of  (13).
The duration of this stage is bounded by a value equal

to a small fraction of time 1/  (in dimensional vari�
ables, this time is equal to RL/vo).

Let us calculate the period of small capillary oscil�
lations of a film stretched on a circle of radius RL. Lin�
earizing system (15) in the vicinity of the unperturbed
state (  =  + δr, |δr| � 1, |z| � 1), we obtain

where  = ∂ /∂ . Dimensionless variables were
introduced above (see relations (14)). Substituting
these relations into system (15), we find that correc�
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tion δr is a second�order correction, which is zero in
the linear approximation. It can be seen that to a first
approximation, the material particles of the film per�
form oscillations, moving strictly along the normal (in
the linear approximation). The equation for ∂2r/∂t2

falls out of system (15); function r(a, t) and
Lagrangian coordinate a can be replaced by the hori�
zontal coordinate (radius r of the cylinder). The lin�
earized equation for ∂2z/∂t2 has the form

(22)

We seek its solution in the form ( , ) =

exp(⎯i )Z( ). Substituting this into Eq. (22), we
find that function Z satisfies the zeroth�order Bessel
equation

(23)
The solution to Eq. (23) we are interested in has the

form Z ∝ J0( ). The second independent solution
can be omitted because it has a logarithmic singularity
in the axis r = 0. Using boundary condition (20) for

= 1 (  = r/RL (14)), we can determine the eigen�
mode spectrum

(24)

where bi are the roots of the equation J0(bi) = 0. The
first three values are b1 = 2.4048255, b2 = 5.5200781,
and b3 = 8.6537279. The period of the fundamental

mode is  = 3.69497.
Let us expand dimensionless initial velocity (18)

into a series in the Bessel functions:

(25)

where the expansion coefficients are given by

For several first values of coefficients (25), we obtain
a1 = 0.7793, a2 = 0.26771, and a3 = –0.06562. The
solution of the problem of the motion of the cupola
apex of the film is given by the converging series

Using this series, we can determine instants tback,

, and the maximal distance between the film and

the substrate, (  = 0, ), in the limit   0.
The values of tmax and tback define the point of the max�
imal ascent of the film and the instant of the impact of
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Fig. 24. Modification of solutions upon variation of the
ratio of the kinetic and capillary energies (see Eqs. (12) and
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the film against the substrate (see Fig. 24, curve z(0, t;

 = 0.6)). These instants are the roots of the equa�
tions

(26)

Initial velocity ∂ ( ,  = 0)/∂  = cos2(π /2) (18)

is a mixture of modes. For this reason, time  =
0.736 is not equal to half the time of return to the sub�
strate ( /2 = 0.97), and the return time  = 1.94
is not equal to half the period of the lowest mode

( /2 = 1.85).

The linear solution is compared with the solution
to complete system (15) in Fig. 25. A noticeable devi�
ation from the linear solution begins after the forma�
tion of the droplet. The droplet is formed at points
(tdrop, zdrop) indicated by markers in Fig. 25. At t > tdrop,
the mass of the axial formation begins to increase from
zero (see Fig. 21). In addition, in the solution to sys�
tem (15), two points instead of one appear on the z axis
(see the loop in the top part of Fig. 16 and Fig. 20).
Namely, apart from point z(a = 0, t), self�intersection
point zdrop(t) appears. Figure 22 shows an intense axial
structure into which the initially small droplet is grad�
ually transformed.

For small values of , the amplitude is |z| ~ ; in
this case, the droplet is formed at the late stage. As a
matter of fact, the time of formation of the droplet on
the surface with a small curvature is long. Time tdrop

rapidly increases with decreasing value of  (see

Figs. 24–26). An increase in velocity  (13) in the
nonlinear system leads to a slight increase in the value

of . For  < 1.4, the time ( ) of drop forma�

tion is longer than . This means that the droplet is
formed on the descending branch of the time depen�

dence z(0, t; ). For  < 0.555, we have ( ) >

( ); i.e., for small amplitudes, the drop has no
time to be formed on the entire time interval (0, tback)
of existence of the film in its flight from the instant of
its separation from the substrate to the instant of its
return to the substrate. Accordingly, time dependence

z(0, t; ) for  < 0.555 has no point of drop forma�

tion. For  > 0.555, the drop generation point on the

z(0, t; ) curve exists (see Figs. 24 and 25). At point

 = 0.555,  = 2.09, the curves ( ) and

( ) intersect (Fig. 26).
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t̂max

t̂back t̂back

T̂1

V̂o V̂o

V̂o

V̂o

t̂max V̂o t̂drop V̂o

t̂max

V̂o V̂o t̂drop V̂o

t̂back V̂o

V̂o V̂o

V̂o

V̂o

V̂o t̂ t̂back V̂o

t̂drop V̂o

For  > 0.555, the drop has time to be generated
during the flight of the cupola. After its formation (t >

tdrop), the z(0, t; ) dependence becomes rather con�
ditional. Indeed (see Fig. 20), three points appear on
the z axis (from bottom to top): the apex of the coun�
terjet (curve 3); joining of the cupola with the central
zone (curve 2); and apex of the jet (curve 4) (see also

Fig. 22). Functions ( ) and ( ) give the
coordinates of the point of drop nucleation at the
cupola apex, which are shown by markers in Figs. 24
and 25. It can be seen from Fig. 24 that the distance

( ) over which the droplet is formed increases

with parameter . However, the time ( ) of
drop formation decreases thereby. These two circum�

stances are associated with the increase in velocity .

It follows from the above arguments that the

asymptotic form for  � 1 is quite simple. Let us

consider the opposite limit  � 1 (see Figs. 24–26).
Surface tension stops the cupola for an arbitrary high
kinetic energy. However, the z coordinate of the stop
point will be large in this case. If the cupola is stopped,
the droplet will surely be formed. Naturally, these
arguments are only valid for an infinite tensility of
film. In fact, under the USLP conditions for thin films
(df = 10–100 nm), the film ruptures under extension
down to a thickness of 1 nm. It follows from analysis of
the dependence of the instantaneous film thickness on
the radius (see Fig. 19) that the rupture occurs approx�
imately over the circle close to the base of the cupola

V̂o

V̂o

t̂drop V̂o ẑdrop V̂o
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Fig. 25. Comparison of linear (curves 1, 3, 5) and nonlin�

ear (curves 2, 4, 6) solutions to system (15) for  = (1, 2)
5, (3, 4) 0.6, and (5, 6) 0.2. The formation of the drop at
the apex indicates that nonlinear corrections have become

significant. As in Fig. 24, bullets ( , ) correspond

to the instant of emergence of the drop and to the position
in which it is located.
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(if we disregard crystallization). In this case, a circular
hole appears in the film covering the substrate.

If we specify initial distribution (18) and assume

that surface tension σ = 0, vσ = 0, and  = ∞, the
right�hand side of system (15) vanishes; i.e., the sub�
stance of the film flies by inertia with a constant veloc�
ity along the normal to the substrate surface:

(27)

For large radii RL of the heating spot, analysis is con�
fined to this assumption, but in the case of foaming,
capillary effects should be taken into account [55, 76–
78]. The motion described by Eqs. (27) stretches the
film. Let us calculate the extent of stretching using for�
mula (21):

In product , the capillary velocity vσ is cancelled
out. It can be seen that the maximum extension corre�
sponds to the point of inflection of the initial velocity
profile (i.e., at the middle of segment (0, RL)). At the
ends of this segment, extension is absent (h = ho),

V̂o

r̂ â t̂,( ) â, ẑ â t̂,( ) V̂ot̂ πâ/2( ).cos
2

= =

h
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1 π
2
��V̂ot̂ πâ( )sin+

2
������������������������������������������.= = =

V̂ot̂

while at the middle of the segment, the film thickness
decreases in accordance with the law

with the asymptotic form

over long time intervals.

3.5. Blistering in Planar Geometry

The axisymmetric case 2Da (15), (16) is qualita�
tively similar to the planar case 2Dp (17). Therefore,
we can use the scheme employed above, viz., the linear

solution, the classification in parameter , and com�
parison of the linear, nonlinear, and MD solutions.
The linearization of 2Dp system (17) leads to the wave
equation

(28)

or

In addition, in the linear approximation, we can disre�
gard the displacement of Lagrangian particles in the
horizontal direction x; in 2Dp geometry, coordinate x
is used instead of radius r. Accordingly, x(a, t) = a,
a  x. Substituting ( , t) = exp(–i )Z( ), we
obtain

This equation replaces Eq. (23) for cylindrical waves.
We are interested in standing capillary waves. In the

general case, such a wave is the superposition of eigen�
modes

(29)

with the discrete spectrum

The period of the first mode is  = 4  = 5.657.
It can be seen that due to the decrease in the total cur�
vature of the film (in the 2Dp case, curvature 1/Rt is
zero; see Eqs. (16), (17)), this period is considerably

larger than the period  = 3.695 (24) of the first
mode of a cylindrical standing wave.
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Fig. 26. Classification of solutions depending on parame�

ter  (13). For  > 0.6435, film does not return to sub�

strate. Point  = 0.6435,  = 2.22 is point of termina�

tion of ( ) curve. Curves z(0, t; ) in Fig. 24 for
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Functions ( ) and ( ) specify coordinates of

point of drop nucleation at apex of cupola. These functions
parametrically define the curve, individual points of which
are indicated by markers in Figs. 24 and 25.
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 1  2015

JET FORMATION IN SPALLATION OF METAL FILM FROM SUBSTRATE 39

Coefficients am of Fourier series (29) are deter�
mined by the initial velocity profile (18):

(30)

Fourier expansion (29) with coefficients (30) com�
pletely determines the linear solution. It should be
noted that binomial cos2(π /2) = 1/2 + (1/2) cos(π )
is not a segment of series (29). Indeed, neither the
constant nor cos(π ) satisfy boundary conditions (20)
separately; consequently, these quantities are not the
eigenmodes of the problem.

Linear solution (29), (30) makes it possible to
determine coordinates tmax, zmax of the stop point for
the cupola in its upward motion and instant tback of the
impact of the film against the substrate (see Eq. (26)).
These values correspond to the limit of small parame�

ters  (13). In 2Dp geometry, we obtain

Here, the values of expression (26) corresponding to
2Da geometry are given in parentheses for comparison.
It can be seen that a decrease in the curvature in 2Dp

geometry is manifested in an increase in times tmax and
tback and in an increase in coordinate zmax of the stop
point.

The classification of solutions depending on

dimensionless velocity  (13) is illustrated in Fig. 27,
which is a generalization of Figs. 24 and 25 to the case
of 2Dp geometry. The curves in the figure correspond
to three MD calculations in 2Dp geometry for the fol�

lowing values of parameter : 0.776379, 1.21293, and
2.56695 (their rounded values are given in Fig. 27).
The higher the velocity, the longer the distance to
which the apex of the cupola ascends above the sub�
strate plane z = 0. Smoother curves correspond to lin�
ear solution (29), (30) and lie lower. Nonlinear effects
become important when the nonlinear solution sub�
stantially deviates from the linear solution.

In Figs. 28–30, the results of the MD simulation and
the numerical solution based on system (17) are com�
pared. The results correspond to late instants at which
the substance of the film is noticeably concentrated in
the central zone. For this reason, description (17) in the

am
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axial region becomes inapplicable in the infinitely thin
film approximation. Nevertheless, outside this region,
the solution to system (17) is in good agreement with
the results of the MD calculations. Satisfactory agree�
ment is preserved over long time intervals even in the
case of a thick film (see Fig. 28). In the MD calcula�
tion illustrated in this figure, the mass per unit film
area after thermalization by the thermostat and imme�
diately before the beginning of motion is μo = 5.27 ×
10–5 g/cm2. The corresponding thickness is ho = 32 nm
and RL/ho = 6.9.

We chose various parameters for MD calculations
to estimate the effect of physical conditions on blister�
ing. In our calculations (see Fig. 28), the dimension�

less velocity was  = 0.776379. The remaining
parameters were as follows: initial velocity vo =
50 m/s, number of atoms Nat = 2976320 ≈ 3 × 106,
RL = 220 nm, thickness of the computational domain
along the coordinate perpendicular to the plane of
Fig. 28 l⊥ = 4.2 nm, and vσ = 64.4 m/s; in all compu�
tations, gold was heated to 1600 K, the surface tension
at this temperature was 546 dyne/cm, and the equilib�
rium density was 16.55 g/cm3 (see Appendix).

The parameters of the MD computations depicted

in Fig. 29 are as follows:  = 1.21293; vo = 150 m/s;
RL = 310 nm; Nat = 1093752 ≈ 1.1 × 106; l⊥ = 4.04 nm;
μo = 1.43 × 10–5 g/cm2; ho = 8.63 nm; and vσ =
124 m/s.

The MD computation depicted in Fig. 30 had the

following parameters:  = 2.56695; vo = 300 m/s;
RL = 310 nm; Nat = 1169640 ≈ 1.2 × 106; l⊥ =
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Fig. 27. Ascent of the apex of the cupola in the 2Dp geom�
etry. Trajectories z(a = 0, t) of apex are plotted in accor�
dance with solution to nonlinear system (17) (upper
curves) in comparison with linear solution (29) (lower
curves). In each pair, complete solution lies above and is
more intricate.
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3.865 nm; μo = 1.60 × 10–5 g/cm2; ho = 9.7 nm; and
vσ = 117 m/s.

Pay attention to a slight instability in the MD com�
putations in Fig. 28. It violates the symmetry x  ⎯x.
This phenomenon is associated with thermal fluctua�
tions (initiation, no exact symmetry) and deceleration
(enhancement of perturbations). The instability leads
to symmetry breaking during the decay of the liquid
film into drops (see below). In calculations based on
model (17) at elevated values of the initial dimension�
less velocity, the instability is manifested more strongly
(cf. Figs. 28, 29, and 30). It embraces the central zone
of the cupola. In the 2Da geometry, the accumulation
of nonlinear effects is manifested primarily in the for�
mation of a drop on the z axis (see Figs. 16, 24, and
25). Outside the drop, the surface of the cupola
remains smooth for some time. In the 2Dp geometry,
the “stirring” of the axial zone can begin prior to the
formation of the central drop (see Figs. 28 and 29). In
model (17), we assume that the formation of the drop
begins after the self�intersection of the film. Outside
the central zone of the cupola, the solution in model
(17) and the results of the MD simulation are in good
agreement (see Figs. 29 and 30). In the 2Dp geometry,
the maximal extension of the film and, accordingly, its
minimal thickness are closer to the central zone than
in the 2Da geometry (see Figs. 29 and 30).

3.6.Rupture of the Film

The rupture of the cupola because of its stretching
and a decrease in thickness to about 1 nm is illustrated
in Fig. 31 (see also Fig. 3c from [84]). The rupture
occurs instantaneously at t ≈ 4.44 ns; apparently, this

process is associated with the development of a viable
nucleus due to thermal fluctuation on the strongly
stretched film. The duration of the process is about
10 ps (see Fig. 31). The effects associated with the
beginning of puncture and its 3D evolution were con�
sidered in [84]. The parameters of the MD computa�
tion presented in Figs. 30 and 31 are identical. The
vertical and horizontal digitization step (pixel size) for
the MD data was 0.8 nm.

The dispersion relation for capillary waves on deep

water has the form ω = k3/2, where ρ is the den�
sity of water. Small�amplitude oscillations on a thin
film are described by wave equation (28). The substi�
tution of z ∝ exp(–iωt + ikx) into Eq. (28) determines
the linear dispersion relation in wave vector k:

(31)

According to this equation, the phase and group veloc�

ities of the surface wave are identical and are vσ/ .
Thus, the wave associated with surface tension on a
thin film is analogous to an acoustic wave in an elastic
medium.

Film rupture (see example in Fig. 31) causes a
sharp change in force�induced stresses. In accordance
with Eqs. (28) and (31), the signal from the rupture

propagates over the film with a finite velocity vσ/ .
The dynamics of formation and expansion of the rup�
ture has some features in common with the dynamics
of nucleation of a void [85] in a stretched condensed
material. In the case of a bulk medium, the perturba�
tion from the rupture is localized in the region between
the spall pulse and the boundary of the vapor�filled
cavity. This pulse propagates from the point of rupture
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Fig. 28. Comparison of results of MD computation
(curves 2 and 3) and model (17) (curve 1); see Fig. 16.
Parameters of MD computations: thick film of initial

thickness h = 32 nm,  = 0.776379. Dimensionless time
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with the velocity of sound. The spall pulse removes the
stress (unloads the stretched material) because behind
it the stretched (negative pressure p < 0) substance is
compressed to the normal state (p  0). Thus, a spall
pulse is a compression wave that elevates pressure from
p < 0 to p ≈ 0. Due to a decrease in the specific volume
upon the removal of stress (unloading), the volume of
the cavity (discontinuity) emerging during nucleation
increases. At the initial stage of nucleation, the veloc�
ity of the spall pulse and of the expansion rate of the
cavity are comparable. Then the expansion of the cav�
ity is sharply decelerated and passes to a strongly sub�
sonic regime of motion.

Ordinary sound propagates in the gold melt heated
to 1600 K with a velocity approximately equal to
2.25 km/s [36, 37, 53, 54]. The traces of its propaga�
tion cannot be seen on the film. As a matter of fact, the
film is thin and is in contact on both sides with the
region of constant pressure (vacuum). For this reason,
ordinary sound propagating over the film dies away
over a distance of the order of the film thickness. Let
us analyze the situation with sound described by
Eqs. (28), (31).

Figure 32 shows the instantaneous distribution of
the horizontal velocity component vx(x, t = 4.512 ns)
in the vicinity of rupture shown in Fig. 31 at 70 ns after
the rupture. The rupture is singled out by two vertical
lines (the “gap” in Figs. 32 and 33), which correspond
to the same instant. The ellipse at the bottom marks a
tiny independent drop separated during rupture.
Another droplet is formed at the right bank of the rup�
ture (see Fig. 33). It is also shown by an ellipse. The
size of these droplets is smaller than a nanometer. Two
velocity jumps propagate from the rupture in the film
to both sides (see Fig. 32). The jump propagating to

the left is marked by the vertical arrow in Fig. 32. The
left vertical in Fig. 33 is located at the same point. The
right jump propagates towards the central drop. At
instant t = 4.512 ns shown in Figs. 32 and 33, the coor�
dinate of the right jump is x = –40 nm. The horizontal
size of the left half of the central drop is marked by the
two�sided horizontal arrow in Fig. 32. Within the cen�
tral drop, the horizontal velocity component vx is
close to zero. This is due to the fact that the mass flows
entering the central drop from the left and right impart
horizontal momenta of opposite signs to the drop.

The calculation of the velocity of the substance
behind the jump relative to the substance of the film
before the jump gives Δvt = 165 m/s at instant t =
4.512 ns corresponding to Figs. 32 and 33. To calculate
the value of Δvt, velocity vectors v– on the left and v+

on the right of the jump were subtracted. The projec�
tion of difference v– – v+ on the direction along the

film is Δvt. Calculation of velocity vσ/  (31) by for�
mula (12), taking into account the decrease in the film
thickness to 2.35 nm, gives 168 m/s. It follows that at
the initial stage after the rupture, the front of the jump
propagates over the film at the velocity of sound (31).
In this sense, this front resembles the spall pulse that
also propagates with the velocity of sound (low�inten�
sity shock wave).

Figure 34 illustrates the situation at instant t =
4.896 ns, when there are three ruptures on the surface
of the cupola. The instants of formation of ruptures are
indicated in each case. The further evolution of the
cupola in Fig. 34 includes the formation of the central
drop that absorbs a piece of film from the third rupture
(4.87 ns) and the formation of the left�side drop. Both
drops move upwards. The left side drop absorbs a piece
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Fig. 31. Rupture of film due to its extension. Parameters
are same as in Fig. 30. Markers trace film boundary. Two
instants are represented: immediately before rupture, t =
4.435 ns (squares) and immediately after it (circles), t =
4.454 ns.
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of the film between the first (4.44 ns) and second
(4.76 ns) ruptures. The second rupture occurs inde�
pendently from the first one. Although the first rupture
(like the spall pulse) terminates the stretching of the
film, the region of increasing film thickness (in which
the spall pulse is acting and stops stretching) is
bounded to the drop. For this reason, the stretching of
the film outside the drop continues, and the second
rupture takes place.

Figure 35 shows the shape of the drop from Fig. 33,
but at a later instant. Like Fig. 32, Fig. 35 also shows
the velocity distribution. The computation of the
velocity of the drop relative to the film substance and
the comparison of this velocity with the local running
velocity of sound (31) show that the velocity jump
continues its propagation at the velocity of sound! This
is astonishing. Indeed, the drop is large, and the time
elapsed since its formation is 456 ps, but it still moves
with the velocity of sound as a small perturbation of
the system of equations (17) (cf. Fig. 32). It turns out
that the velocity jump is equivalent to the spall pulse in
the bulk case, the drop is equivalent to the region of
compression between the spall pulse front and the cav�
ity, and the 3D cavity is equivalent to the film rupture.
This contradicts the obviously nonlinear form of the
flow in the presence of a coarse drop. A film  film
transformation upon a transition through the velocity
jump is not seen. Instead of this, the substance of the
film is absorbed by the drop. The latter cannot be
treated as a film. It may appear that the drop must act
as a sort of the boundary condition imposed on the
film outside the drop (in this connection, see Figs. 16,

29, and 30 with the central drop and adjoining film;
see also the discussion where these figures are com�
pared with the results of MD simulation).

The coincidence of the velocity of the drop (rela�
tive to the substance of the film in front of it) with the
velocity of sound (31) can be explained as follows. Let
us write the law of conservation of momentum

(32)

The left�hand side of the momentum balance equa�
tion (32) contains the force acting on the drop, and
the right�hand side is the gained momentum. Coeffi�
cient 2 appears because the film has two surfaces. This
momentum is accumulated over time t. During this
time, a piece of the film of length l is absorbed by the
drop. The film thickness is denoted by df. Upon the
intersection of the velocity�jump front (which is
simultaneously the boundary of the drop), the velocity
of a particle of the substance changes by Δv. The
material particle in the drop and the velocity jump
front move with velocity Δv relative to the film sub�
stance. Substituting the kinematic condition l = tΔv
into Eq. (32), we obtain

(33)

i.e., the law of conservation of momentum makes the
drop move at the velocity of sound (31).

Let us write the law of conservation of energy. Let
the film be at rest. A drop approaches the film from
one of its ends. For example, the drop in Fig. 35 moves
from right to left. The velocity of the drop relative to
the film is Δv (33). Equating the work done by surface

2σt dflρΔv.=

Δv v
σ

/ 2,=

−80

80

vx, m/s

−60 −40 −20

Δv

x, nm

40

−100

120

0

−40

Slit

0

Fig. 32. Velocity jump resembling spall pulse at instant t =
4.512 ns. Jump front is shown by vertical arrow Δv. This
front is on left from rupture (slit). Front propagating to the
right is located at this instant at point x = –40 nm. Param�
eters of computation correspond to the high�velocity case
depicted in Fig. 30. Two�sided horizontal arrow marks
position of central drop formed at cupola apex (see Figs. 30
and 33).
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Fig. 33. Formation of drops (bulges) at rupture banks.
These are new drops relative to central drop. Tiny nano�
drops shown by circles are insignificant. It can be seen that
the velocity jump front in Fig. 32 coincides with boundary
between the drop and film. Jump is shown by vertical arrow
in Fig. 32 and by continuous straight line in this figure.
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tension forces to the kinetic energy of the drop plus
dissipated energy Q, we obtain

where the left�hand side is the spent capillary energy
and the right�hand side is the sum of the kinetic energy
of the drop and the energy converted into heat per unit
area. Substituting velocity increment (33) into this
relation, we find that half the surface energy is con�
verted into the kinetic energy, and the other half dissi�
pates (Q = σ). In the above formulas, we assumed that
the film is thin. Therefore, the film surface area is
much larger than the area of the drop formed from it.
Therefore, we can disregard capillary energy of the
drop.

The existence of relation (33) does not mean that
on the film surface (i.e., outside the drop at the end of
the film), wave equation (28) and expression (31) for
the velocity of sound do not hold. Relation (33)
implies that the end drop formed due to the rupture of
the film moves at the velocity of sound (like the spall
pulse). Therefore, a material particle of the film (right
to its absorption by the drop) “does not know” that the
rupture has occurred. Considering the Mach number,
we note that during the ascent of the cupola to height
z ~ RL, the velocity of flow of the substance into the
central drop is comparable to the velocity of sound

(31), Δv ≈ 0.5vσ/ .

It should be emphasized that with increasing initial

velocity vo (18) and dimensionless key parameter 
(13) (assuming that the values of σ and μo (16) are
fixed), the direction (downward or upward) of the pre�

2lσ kdfρ Δv( )2
/2 Ql,+=

2

V̂o

ferred emission of the mass of the gold film separated
from the substrate changes. This can be seen from the

curves in Figs. 24, 25, and 27. For  < A, the main
mass returns to the substrate, because in the opposite
case the major part of the mass flies away (ablation);
quantity A ≈ 1.8. The concept “main mass” corre�
sponds to the central drop that always moves approxi�
mately along the vertical (along the z axis). This is due
to the approximate symmetry of the cupola. The angle
of emission of a small droplet (if it exists) is deter�
mined by the vector of the momentum of the detached
piece of the film prior to its separation from the main
film. An example of such a piece is given in Fig. 34 (the
piece between the ruptures at 4.76 and 4.44 ns). In the
case represented in Fig. 29, the central drop hits the
substrate. In the case illustrated in Fig. 30, the central
drop moved upwards along the vertical.

3.7. Physical Reasons for the Flow of the Substance
to the Axis and for the Jet Formation

Capillary forces basically change the form of
motion of the film, in contrast to cases with zero sur�
face tension (cf. curves 1–3 in Fig. 16 with curve 4).
The resistance of the surface of the cupola to its exten�
sion leads to the emergence of high acceleration and
deceleration, ∂2r/∂t2 ≡ ar and ∂2z/∂t2 ≡ az. A typical
example is shown in Fig. 36. The figure is the same as
Fig. 16, in which accelerations leading to such dis�
placements are shown instead of displacements. We
did not indicate in Fig. 36 accelerations in the sub�
stance that entered into the loop (see Fig. 16). Dimen�
sionless accelerations  in the capillary system of units

V̂o

â
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Fig. 34. Evolution of cupola for initial parameters specified
in Fig. 30 (high initial velocity of 300 m/s); t = 4.896 ns.
Clearly seen central drop and drops at banks of ruptures
are indicated. Drop at right band of first rupture has
merged with central drop. Instant of the given rupture is
indicated. Drop at left bank of first rupture is shown in Fig.
35 on a large scale.
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Fig. 35. Shape of region shown by rectangle in Fig. 34.
Large drop and velocity jump associated with boundary
between drop and film can be seen. This is shape of drop
shown on left side of Fig. 33 at a later instant. Drop absorbs
with time newer and newer portions of film and increases
in size.
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are transformed into dimensional accelerations by the

formula |∂2r/∂t2| = ( /RL) . Substituting the param�

eters of the MD computation illustrated in Fig. 16 for

acceleration scale /RL, we obtain 4.4 × 1012 cm/s2.

This value is nine orders of magnitude higher than the
acceleration due to gravity, two orders of magnitude
higher than the free�fall acceleration on white dwarfs,
and amounts to a few percent of the huge acceleration
on neutron stars.

In the noninertial system of coordinates attached
to decelerating cupola G (see Fig. 36), deceleration az

is equivalent to that of the effective gravity field (bus
deceleration effect), see Fig. 37. The acceleration
component tangential to the cupola surface leads to
the downward slip of the liquid towards the symmetry
axis. This explains the origin of velocities directed to
the center. The flow of the substance to the axis, first,
causes a decrease in the film thickness in the cupola
and, second, forms the bulk axial lump (see Fig. 22).
The collision of the radial flow of the film with the axis
leads to the emergence of a jet and a counterjet. This is
a standard effect in the theory of collisions of jets [82,
83]. Thus, the physics of the nanostructuring in actual
experiments [1, 2, 28–33, 86–88], in which nanojets
and the counterjets were detected (see Fig. 7 in [28]),
becomes clear. In previous theoretical constructions,
the origin of the radial flow of the liquid phase to the
central zone could not be explained.

v
σ

2 â

v
σ

2

4. CONCLUSIONS

The problem of the spatially localized action of
laser radiation on a film target is important for many
applications from microelectronics to biomedicine
and nanoplasmonics [1, 2, 28–33, 86–88]. We have
constructed a detailed model of the action on the film.
The model includes the stage of spallation lasting tens
of picoseconds, as well as the stage of evolution of the
cupola lasting about 1–10 ns. The fine features of the
interaction of hydrodynamic waves in the film and the
substrate have been analyzed. The physical picture of
separation (blistering) of the film from the substrate
has been described. The ablation of thin films from a
dielectric substrate has not been described earlier.

Although ideas about the thermomechanical
nature of rapid (isochoric heating) ablation have been
well developed at present [4, 5, 14–18, 44–47, 56, 63,
65, 67, 69, 89], we describe a number of new aspects.
The relation between the absorbed fluence and the
velocity of the gold film bounced from the substrate
has been obtained (Section 2). A large�scale MD com�
putation has been carried out in the axial geometry
(Sections 3.2 and 3.3). It has been demonstrated how
the nanojet is formed (see Fig. 22). The nonlinear sys�
tem of partial differential equations describing the
cupola flight has been analyzed (Sections 3.4 and 3.5).
The effect of geometry (planar and axisymmetric
cases, Section 3) has been considered. The case of low
velocities of motion of the film from the substrate (lin�
ear theory, 2Da and 2Dp cases; Sections 3.4 and 3.5,
respectively) has been studied analytically. The decay
of the film and formation of nanodrops have been ana�
lyzed (Section 3.6). A simple explanation has been
obtained for the flow of the substance to the apical zone
of the cupola (Section 3.7). It is this process that leads
to the formation of jets and counterjets (Section 3.7).
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APPENDIX

Interparticle Potential, Binodal, and Surface Tension

In MD computations, we have used the interparti�
cle potential of gold from [70]. This potential corre�
sponds to the embedded atom method (EAM poten�
tial). Let us compare the results obtained using the
equation of state [36, 37, 53, 54] and with the help of
the EAM potential. The given equation of state was
used in the hydrodynamic analysis of ablation of gold
film from a substrate in Section 2. The method for
determining the thermodynamic parameters is illus�
trated in Fig. 38. We take a gold film with a thickness
of about 25 nm. The film has two free boundaries.
Coordinate x in Fig. 38 is perpendicular to the plane of
the film. The figure shows two near�boundary layers of
the film on a large scale, and the middle part is omit�
ted.

The method for determining the surface tension
and thermodynamic parameters can be described as
follows. The substance of the film is heated by a ther�
mostat to a preset temperature. Then the system is
kept thermostatic for a long time. The parameters are
determined when the system attains thermal equilib�
rium. The values of surface tension for four tempera�
tures determined in this way are given above in Fig. 15.
It should be noted that these values satisfactorily fit
into the σ(T) curve from [75]. To determine σ, the net
tangential pressure τ in Fig. 38 should be integrated
with respect to coordinate x over both liquid�vapor
interfaces.

Outside the film in Fig. 38, the pressure is low, and
the film slowly evaporates (temperatures are also low).
The boiling point of gold is 3243 K. At this tempera�
ture, the saturated vapor pressure above the gold melt
attains one atmosphere. Even pressures of 100 atm are
negligible, compared to shear stress τ in Fig. 38.
Therefore, the presence of vapor does not affect the

accuracy in determining the capillary factor in the
temperature range under investigation.

The density of the substance in the central part of
the film in Fig. 38 corresponds to the state on the bin�
odal in accordance with the embedded atom method
(EAM) potential used. The segment of the binodal we
are interested in is referred to as the boiling curve. On
this segment, the condensed phase (liquid) borders the
vapor–liquid two�phase region. Comparison of the
boiling curves obtained with the help of the equation
of state and MD simulation is illustrated in Fig. 39.
The MD values on the binodal are indicated by mark�
ers.

The EAM potential considerably reduces surface
tension σ (by half; see Fig. 15). Conversely, thermal
expansion coefficient β = (∂ lnV/∂T)p is overestimated
(see Fig. 39). For this reason, the boiling curve
obtained in the MD computations lies below. Accord�
ingly, the critical temperature determined with the help
of the EAM potential is lower, and the saturated vapor
pressure is higher (at the same temperature). It is inter�
esting that coefficients of thermal expansion β as well
as σ differ by a factor of two: βEOS = 0.48 × 10–4 K–1 and
βEAM = 0.96 × 10–4 K–1. The error in determining
β ≈ 0.43 × 10–4 K–1 in the solid phase is much smaller.
The parameters of the solid phase are described with
the help of the EAM potential to a high degree of
accuracy [70].

The EAM potential gives accurate values of the
parameters of the triple point: melting temperature Tm
and the difference in the densities of the solid and liq�
uid phases. EAM potential [70] gives a value of
1330 K, while the reference value of Tm is 1337 K.
Therefore, the MD boiling curve in Fig. 39 emerges
from the left end of the segment corresponding to the
triple point on the ρ, T plane. Quantity β is the differ�
ential coefficient; its computation involves differenti�
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ation. The density of the melt determined with the
help of the EAM potential [70] is in good agreement
with that obtained using the equation of state. Even at
the point with the highest temperature (2.4 kK) in
Fig. 39, the density is lower only by 8%.
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