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Abstract. We have investigated transport properties of an electron subsystem of copper
heated by a femtosecond laser pulse. These properties change greatly in comparison with the
room temperature solid metal. The electron temperature and pressure profiles significantly
depend on these properties in bulk laser targets according to the two-temperature (2T) model.
These profiles at the 2T stage are responsible for shock and rarefaction waves’ formation. We
have developed the analytical model of electroconductivity and heat conductivity of copper
which takes into account changes of density, electron and ion temperatures. The model is
based on the solution of the Boltzmann equation in the relaxation time approximation for
consideration of electron collisions. Also we have carried out the first-principles calculations
using the Kubo–Greenwood theory, methods of pseudopotential and linear augmented plane
waves which are necessary to evaluate electron wavefunctions. We have provided the check of
convergence of all parameters of our first-principles calculations. The results of our analytical
model for electro- and heat conductivities are in good agreement with the data obtained using
the linearized augmented plane wave (LAPW) method.

1. Introduction

Some years ago experimental investigations of ultrashort laser irradiation of copper and gold
foils with submicrometer thickness have been provided [1,2]. In this case, thicknesses of foils and
heated layer where two-temperature state is observed, have the same order of magnitude. Due
to this, electron transport of energy to the cold bulk of the laser target is lacked. Thus the rate
of laser energy relaxation is lower than for bulk laser targets. We can expect that maximum of
electron temperature and duration of two-temperature state would be greater than for the case of
bulk target. So we can say that accurate determination of electron thermodynamic and transport
properties is an important task for the theoretical investigations of laser irradiation of these
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targets. In the work [3], the experimental and first-principle investigations of copper transport
properties were provided but only for low density range (0.3–0.5 g/cc). Using the analytical
methods and first-principles calculations we consider a wide range of copper thermodynamic
states which can exist after femtosecond irradiation by a laser pulse with fluence at the ablation
threshold or slightly above. The range of considered densities was within the interval from 7.6 to
9.4 g/cc. Upper ion temperature was set equal to 15 000 K, the maximum electron temperature
is 55 kK.

One of the most important questions discussed in this article is a description of the
contribution of electron-electron collisions in quantum molecular dynamics calculations of the
electronic kinetic coefficients in the approach based on the Kubo–Greenwood theory. Currently,
this question is widely discussed, and there is no reliable answer. There are results of research
carried out for simple metals [4] and hydrogen [5], where this influence is found to be negligible for
normal densities. However, it is known that the above substances can be successfully considered
in the model of almost free electrons because of the simplicity of their band structure, which
actually does not change with electronic temperature. This is not true for the copper, containing
a d-electron band not far from the Fermi energy, which according to available data [6] changes
its position relative to the Fermi energy. It will be seen that the effect of electron-electron
collisions is a factor that may explain the difference between data of first-principles calculations
and independently constructed semi-analytical models.

Adequate evaluation of the thermal conductivity of the considered metal is necessary to carry
out calculations by the method of two-temperature hydrodynamics, taking into account that this
value is dependent on the density of the material and its electron and ion temperatures. To this
date there were three main methods of calculation of heat conductivity.

The first one was to use a phenomenological dependencies [7, 8] obtained with the help
of extrapolation of known data in some range of parameters of matter, such as temperature
and density. In the second case, the main effort in determining the thermal conductivity was
made to calculate the electron-electron collision frequencies to use them within the framework
of relaxation time approximation [9–11]. The method of quantum molecular dynamics in
combination with the Kubo–Greenwood theory provides an ability to calculate beyond the
limitations of the aforementioned approaches. This method is the third approach to determine
the behavior of electronic kinetic coefficients. This approach is used to calculate the kinetic
coefficients in melts of metals over the past 15 years [12–15]. It can be noted that these papers
were focused on the aluminum because of its simple electronic structure that diminishes the
computational difficulty of the discussed problem.

The work [14] is an example of work where kinetic coefficients for metals with more complex
electronic structure were calculated by using of the method of quantum molecular dynamics
in combination with the Kubo–Greenwood formula. In this work, devoted in particular to the
calculation of thermal conductivity, liquid gold with electrons, heated to temperatures of the
order of several eV, was considered firstly. Gold has a fully filled d-band with a top, which lies
in 2 eV below the Fermi energy, at low electronic temperatures. If the electron temperature is
comparable to the gap between d-band and the Fermi energy, the electrons of this band becomes
involved in the processes of absorption of laser energy and transfer it into the metal because
of the thermal excitation of electrons into the unfilled states above the Fermi energy. Hence,
it is necessary to take into account all eleven electrons of the valence bands for such a metal
to describe electron kinetic coefficients using the method of quantum molecular dynamics in
combination with the Kubo–Greenwood formula. This obstacle greatly complicates the task
in comparison to the case of aluminum which has 3 valence electrons and gives the electronic
structure which is similar to the one for free electron gas.

In this article the following section describes the main details of the approach used to calculate
the kinetic coefficients of the copper. In the third section, we provided the initial data of our
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calculation and also discussed the form of analytic fits we obtained to use them in our further
calculations. The fourth section describes the semi-analytical model, based on the solution of
the Boltzmann equation in the relaxation time approximation, the asymptotic dependencies for
the thermal conductivity at low and high temperatures, as well as a simple model equation of
state of heated metal. Consideration about the influence of electron-electron collisions on the
result obtained using first-principles calculations is given in the fifth section. Comparison of
the results obtained independently using the method of quantum molecular dynamics (QMD)
and the Kubo–Greenwood formula on the one hand and with the use of semi-analytical models,
on the other, is given in the sixth section. The discussion of calculated data for the thermal
conductivity and resistivity and the comparison with experimental data and calculations based
on the wide-range plasma models, are provided here.

2. Computational details

QMD simulations are widely used for calculations of properties of metals in a two-temperature
state [16–21]. In this work, the calculation of the ionic configuration of copper in solid and
liquid states was carried out using a QMD simulation for a supercell under periodic boundary
conditions to reproduce the arrangement of atoms in condensed matter. The supercell contains
32 atoms in a cubic cell of size 2 × 2 × 2 lattice periods for a given density. The description
of the behavior of electrons was produced using PAW method and the exchange-correlation
(xc) functional in the PBE form. DFT code VASP [22, 23] was used in the calculation of
thermodynamic properties and ionic configurations. We have used the cutoff energy 300 eV, 15
empty levels per atom, and the magnitude of the error at convergence of electronic iterations
was no more than a 10−5 eV for the total energy of the whole system. We use only 1 k-point
located in Γ-point of the Brillouin zone of the supercell with 32 atoms.

To obtain ion configurations, QMD simulations were carried out in several stages by the use
of different thermodynamic ensembles. In the first approach, the simulations were carried out
for obtaining a phase state, predicted by the one-temperature phase diagram of the copper [25].
There three stages were carried out for modeling of the motion of atoms in the unit cell. At
the first stage, we used the Nose–Hoover thermostat in the system during 1.5 ps, so that the
ion temperature was raised up to the 4000 K, which is sufficient to obtain a melt according to
a known one-temperature melting curve for all considered densities. In the second stage during
also 1.5 ps the supercell in the liquid state is brought to the target temperature. Here, 7 values
of ion temperature in the supercells were considered: 1, 2, 4, 7.5, and 15 kK. The values of the
considered electron temperature in addition to the aforementioned ion temperatures are also
included points 30 and 55 kK. Thus, only for the temperature 1 kK (and also 2 kK if the density
is equal to 9.4 g/cc) the resulting state could not been the target, since these points lie either
below the melting curve, or close to it. After bringing the atoms to a state with pair-correlation
function corresponding to the molten copper, the thermostat was disconnected and the system
was simulated in NVE ensemble.

In the second approach the necessity for the state initially stable according to the one-
temperature phase diagram was ignored, so heating by the thermostat was carried out for the 3
ps to a state with the target temperature. Further, the stage of ionic configurations relaxation
was held in the NVE ensemble, completely similar to the first approach. This stage has lasted
for 0.5 ps.

The decision to hold this additional calculation with the use of the second approach stemmed
from two reasons. First, we consider ultrashort processes in which the stable phase state,
strictly speaking, is incorrect because stability of the phase state for such a short time cannot be
determined. In such processes which are relevant on the time of electron-ion relaxation, heating
of ion subsystem occurs monotonically, which is correspond to the calculation according to the
second approach. Secondly, the pressure emerging in cell due to the strong electron heating
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Figure 1. (a) Radial distribution function for the sets of ionic configurations with 108 (black),
64(blue), 32(red) and 27 (green) atoms of copper at the density of 8 g/cc and equilibrium
temperature 2000 K. The experimental data were obtained by [24] for copper at 1473 K and
atmospheric pressure. (b) Ion configuration averaged densities of states. The black, blue, red
and green lines correspond to the supercells with 108, 64, 32 and 27 atoms. Densities of states
around Fermi energy are shown in better resolution in the sidebar. The thermodynamic state
is the same as in the left figure.

(up to several eV) for a fixed volume reaches the value 100 GPa and above. It can modify the
behavior of the melting curve. For this reason, we have to talk about not only the melting curve,
but the set of such curves for different fixed electronic temperatures.

The check was conducted to verify convergence in the number of particles in the calculations
by full-electron approach, to see the influence of particle number of the ion distribution and
electron spectra. In figure 1a there are presented pair-correlation function (PCF) of copper
obtained by averaging over the set of 4 configurations for the calculation of systems containing
108, 64, 32 and 27 atoms. Five hundred ionic configurations were used for each number of atoms
to calculate PCF with periodic boundary conditions. PCF are shown in figure 1a correspond to
the thermodynamic state of copper at a density of 8 g/cc and the temperature of electrons and
ions 2 kK. The experimental data shown in this figure were presented in work [24] for copper
at atmospheric pressure and equilibrium temperature 1400 K which is close to melting point of
copper (1356 K). We can notice that the density at the melting point for copper is the same
as one used in our calculations of PCF presented in fig 1a. Thus, our results for PCF are in
qualitative agreement with the experimental data despite of the noticeable difference between
the temperature of measured state of copper and the temperature of state simulated by QMD. In
the same way the averaged electron DoS was obtained for the indicated supercells with different
number of atoms and the same temperature and density. According to PCF data, we can say
that the calculation of the systems of 32 and 27 atoms give the possibility to describe only the
first two peaks of PCF for liquid copper at given density and temperature. But even with 108
atoms the described range of PCF is limited to less than 1 nm. Data for DoS are shown in
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Table 1. The convergence of the results obtained using pseudopotential approach in Kubo–
Greenwood calculations for the state with density 9.4 g/cc, electron temperature Te = 55 kK,
and ion temperature Ti = 7.5 kK.

Nat Nb Ecut, eV Nkpt κ, W/(mK) δκ, % r, µOhmm δr, %

32 11 300 64 2401 2.6 0.513 3
32 19 300 64 2450 6.4 0.522 4.5
32 11 600 64 2655 2.9 0.493 2.9
108 11 300 64 1179 6.3 0.464 4.4

Table 2. The convergence in the number of k-points for FP-LAPW calculations using Kubo–
Greenwood formula for the state with density 8 g/cc, electron temperature Te = 2 kK, and ion
temperature Ti = 2 kK.

Nk-points r, µΩm κ, W/(mK) ∆E, eV/atom

4× 4× 4 0.32 165.7 2.25
6× 6× 6 0.29 157.6 −1.11
8× 8× 8 0.27 143.1 −0.42
10× 10× 10 0.27 135.4 0.08
12× 12× 12 0.26 132.2 0.007
8× 8× 8 shift 0.27 134.7 0.207
12× 12× 12 shift 0.26 129.0 0

figure 1b. The behavior of DoS is independent of the number of atoms in the system with good
accuracy. It can also be noted that the DoS at the Fermi level is not depend on energy in the
range of 1 eV. The existing oscillations, clearly visible in the sidebar, are only a consequence of
the coarseness of the grid of energy values, which used to reproduce DoS.

During the QMD calculation of thermodynamic properties of copper in the discussed range
of densities, electron and ion temperatures were also determined in addition to values of time-
averaged thermodynamic potentials for copper phase states in supercells. It turned out that
the position of the melting curve changes significantly with the growth of electron temperature
and, consequently, pressure at a constant density and ion temperature. Despite the very coarse
mesh of ion temperature, it was found that isotherm 2 kK of ion temperature refers to a solid
state when the temperature of electrons is 7.5 kK or greater in the whole investigated range of
density. Moreover, in the states with a density of 9.4 and 8.8 g/cc and electron temperature
equal to 55 kK the solid state is detected at the temperature of ions 4 kK. Conclusions about the
phase state of the cell were done according to the calculated pair-correlation functions, which
were averaged over all time steps of modeling in NVE ensemble.

It was decided to perform calculations of the electronic kinetic coefficients using DFT and
the Kubo–Greenwood formula by two different methods. In the first case, the calculation is
continued in code VASP. In the static calculation of the electronic single-particle wave functions,
the number of bands was increased to 20 per atom, the cutoff energy was kept equal to the
300 eV, as a condition on the convergence of energy 10−5 eV. Data on the convergence of
results of calculation with such parameters for the states with 9.4 density g/cc, the electron and
ion temperatures of 55 and 2 kK, respectively, are shown in table 1, where we used following
designations: Nat is a number of atoms in supercell, Nb is a number of empty electrons states,
Ecut is a planewave cutoff energy, Nkpt is a number of points in the Monkhorst–Pack grid. It
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Table 3. The convergence in the number of empty electron levels for full-electron calculation
for the state with density 9.4 g/cc, electron temperature Te = 55 kK, and ion temperature
Ti = 7.6 kK.

Nk-points r, µΩm κ, W/(mK) ∆E, eV/atom

11 1.60 756 133.6
30 1.61 794 0.2
60 1.62 802 0

should be noted that according to table 1, the convergence in the number of particles is not
achieved. We will return to this issue when discussing the convergence of the calculations by
another method.

Calculation of matrix elements of the momentum operator was based on the previously
obtained single-particle electronic wave functions. These elements were calculated for fixed
electronic density. After this step, the calculation of dynamic Onsager coefficients was performed,
which are then used to find the static values. These values are used to determine all considered in
this work electronic kinetic coefficients according to the Onsager relations. The only parameter
for which we have to perform the convergence check is the width of the Gaussian function
representing the analytical representation of the δ-function in the Fermi “Golden rule”. The
procedure for determining the correct value for this quantity was carried out as follows. If you
take too small width approximation, for the δ-function, it will not be captured by neither of
the neighboring electronic level. Accordingly, starting from some value of this width, then it
decreases the result of summation by the Kubo–Greenwood formula. On the other hand, if the
Gaussian function becomes strongly broadened, there will be errors associated with the fact that
the contribution of the nearest levels will have less weight [15]. Accordingly, it is necessary to find
an intermediate area in which the aforementioned trends are not evident, and the magnitude of
the broadening has no significant effect on the result. The latter is important because the width
of the Gaussian function is a computing parameter, not emerging in theoretical formulation,
and, consequently, in the ideal case, the influence of this parameter should be negligible. After
the investigation, it was found that the optimal value of Gaussian function width is about
0.1–0.15 eV.

In the second case, full-electron approach implemented in the computational code Elk [26]
was used. In this code it is possible to define matrix elements using electronic single-particle
wave functions calculated by the method of linearized augmented plane waves (LAPW). Also
electronic kinetic coefficients according to the Kubo–Greenwood formula can be obtained. The
additions in code made for this calculation came down to implementing of expressions for all
Onsager coefficients, not only electroconductivity. The procedure of calculation of the chemical
potential was added. It is necessary for calculation of L12, L21 and L22 Onsager coefficients. Now
it is possible to set arbitrary width of the δ-function. Initially, it was possible using to calculate
the dynamic conductivity by using this code. Since the broadening of the δ-function was fixed
at a value of the electron smearing, it was implicitly assumed that the electron temperature will
not exceed several thousand Kelvin degrees.

At temperatures of the electrons up to 7.5 kK the grid of Monkhorst–Pack points was used
8x8x8. Data about the convergence at different grids of Monkhorst–Pack points are given in
table 2. At higher electronic temperatures (the temperature of electrons 30 kK or greater) the
simplified Monkhorst–Pack grid was used with 4× 4× 4 points, but the number of unoccupied
electronic levels was increased from 11 to 20. The convergence on the last parameter was checked
for the point (ρ = 9.4 g/cc; Te = 55 kK, Ti = 2 kK) to the value of unoccupied levels equal
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to 60, and it was shown that the convergence in this parameter are achieved with the required
accuracy in 20 unoccupied levels (see table 3). The other parameters of the LAPW calculation
were fixed. For the product of the radius of the muffin-tin sphere on the maximal value of
the modulus of the electronic wave vector the value of 7.0 was set. The convergence of the
total energy and the potential in the Kohn-Sham equation was determined by the values of
the differences between the two last iterations 10−4 and 10−6 Ha, respectively. We have used
the local density approximation for the xc-correlation functional in the representation of the
Perdew–Wang or Ceperley–Alder, which was used in the calculation with VASP.

Due to large computational complexity of full-electron calculation it was decided to keep
only 13 points from the original mesh of density, electron and ion temperatures used in QMD
calculations of ionic configurations. At the same time, the minimum of required ensembles
of ionic configurations was provided for these points to be able to carry out the procedure of
averaging over the configurations.

The check of convergence of full-electron calculation in the number of atoms was performed
for copper under the following conditions: the density is 9.4 g/cc, the equilibrium temperature is
2 kK. Here 4 ionic configuration were used, which containing 108, 64, 32 and 27 atoms in cubic
supercells. In the first case, the number of Monkhorst–Pack points was reduced to 5 × 5 × 5
because of the extremely high requirements of used memory. All other calculation parameters,
discussed above, have not been changed. We can notice that owing to the reduced volume of
reciprocal space the density of the Monkhorst–Pack points increases. So the resulting densities
of Monkhorst–Pack points in the supercells with 108 and 32 atoms are almost the same. In
figure 2 it is shown that the convergence of electrical resistivity or thermal conductivity is not
achieved with the increase of the length of supercell edge l. Similar behavior was observed also
for calculations with a pseudopotential method in the code VASP 1. In order to ease submission
of data for supercells of different sizes, the length of supercell edge l is used on the horizontal
axis.

As an explanation for such a behavior of the obtained values for kinetic coefficients on the
number of particles, it is possible to suggest the following arguments. We will use the Drude
model, which can be used for qualitative estimations of the values of kinetic coefficients for
liquid copper at these temperatures according to experimental data (see, e.g., [27]). It is known
that at the density and temperature close to specified here, the electrical resistivity of copper
is ρ ∼ 0.4 µOhmm. According to the Drude formula ρ = me(nee

2τ)−1 and known data for
effective electron mass and the number of electrons in the s-conduction band (equal to the
electron mass in vacuum and 2 [11], respectively), it turns out that the average effective time
between collisions is about 4.6 ps. Then, estimating the speed of the electrons through Fermi
value vF =

√

2EF /me, where EF = 9.25 eV, we can estimate the mean free path of the electron
under these thermodynamic conditions is ∼ 8 nm. Thus, the maximum of the linear size of the
supercells exactly an order of magnitude less than the estimated mean free path. Immediately,
you can specify that currently, the method of quantum molecular dynamics is impossible for a
system of ∼ 105 atoms due to the computational limitations.

On the other hand, remaining in the framework of the Drude model, we can try to estimate,
are there any conditions in which the first-principles calculation may be carried out by the
condition of convergence in the number of particles. Presented in figure 5a results show that
resistivity becomes equal to 1 µOhmm at heating to a few tens of thousands Kelvin. In some
works [6, 28] on the basis of obtained by DFT calculations partial DoS one conclude that the
number of s-electrons with increasing Te is growing from 1 to 2. The mean free path length
is reduced to 2–5 nm, which would require about 600 atoms that are already close to modern
computing capabilities, however, this or a greater number of atoms achieved so far only for
aluminum [29]. Figure 2 shows that the change of the electrical resistivity and heat conductivity
with increasing number of atoms from 32 to 108 achieves approximately 30%. The same fact is
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Figure 2. The dependencies of electroresistivity (black points) and heat conductivity (red
points) on the linear size of used cubic supercells.

shown in figure 2, where errors shown in this figure correspond only to the contribution of the
averaging over the configurations. The error due to convergence in the number of unoccupied
levels for a cell with 32 atoms is 0.5 and 6% for resistivity and heat conductivity, respectively.
The error from the convergence on the grid points of Monkhorst–Pack is estimated equal to 4
and 7% for this supercell.

In conclusion of this section, the convergence results for the kinetic coefficients in the width
of δ-function broadening width are shown. In full-electron calculation, the value of width, which
should be used according to the aforementioned criterion, is also ∼ 0.1 eV. This conclusion is
illustrated by the behavior of electrical resistivity with increase of the width in figure 3a. It
can be noted that in full compliance with the work [29] an area of applicable values for width
increases with the number of atoms in supercell. Also it is interesting to investigate the behavior
of the electrical conductivity with the growth of the discussed parameter. According to figure 3b
it was obtained that the heat conductivity starts to grow linearly with the broadening width
as kW = k0 + aδ, where both the coefficients k0, a are positive. To verify this statement, the
calculations were made at too high width of 2.7 eV. Using the results of these calculation we
showed that the linear law remains when the value of δ is many times greater than the one
that should be used according to the criterion which is found at the consideration of electrical
resistivity. Additionally, the inset shows that the ratio of the values obtained in the calculation
and linear asymptotics, comes close to unity, starting with the ∼ 0.1 eV, which is the applicable
region of values of δ. The error due to the variation of δ can be evaluated equal to 10%.

3. First-principles results

According to the results of the previous section, only 13 thermodynamic states were considered
due to the high computational capacity of calculation. These states are differ by density, electron
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Figure 3. (a) The dependencies of electrical resistivity from δ-function broadening for 108
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δ-function broadening for the supercell with 27 atoms. In the sidebar, these values are divided
on the linear asymptotic law κW = 74.3 + 411.2δ.

or ion temperatures. The results obtained here for density 8 g/cc, electronic temperature up to
55 kK, and different ion temperatures are presented in figure 4. In figure 4a we provided the
data for electrical resistivity at different ion temperatures 2 and 7.5 kk, respectively. These data
was obtained by full-electron calculations. As we can see in figure 4b, the curves of electronic
conductivity are determined using full-electron and pseudopotential calculation agree well with
each other.

In addition to the results of direct calculations in figure 4, the curves are drawn for two
fittings constructed to reproduce the data for Onsager coefficients at whole ranges of density
and both temperatures. The functional form of these fittings are similar to that proposed in
the paper [7]. In the case of thermal conductivity and full-electron calculation, the shape of the
fitting according to full-electron calculation looks like this:

κFE(ρ, Te, Ti) = γ0
T g
e + βi(ρ0/ρ)

b

(1 + γmT s
e )(Ci + T d

e )
. (1)

Assuming that electron and ion temperatures are taken in eV, the coefficients in (1) have
the following values: γ0 = 0.888 W/(mK), g = 2.239, βi = 0.799, b = −0.895, γm = 0.00493,
s = 3.243, Ci = 1.215, d = 2.035. Density ρ0, which is the divisor in the expression (1), is equal
to 8 g/cc.

In the case of resistivity functional form is taken as follows:

ρFE(ρ, Te, Ti) =
LWFTe

κFE(ρ, Te, Ti)
. (2)

Here we used the value of Lorentz number LWF, which is equal to 2.44 10−8 WOhm/K2. In
the case of electrical resistivity according to the formula (2) the coefficients used here have the
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Figure 4. (a) Comparison between calculated data for copper electrical resistivity and analytical
fit. Density of copper fixed at 8 g/cc. The data for Ti = 2 kK are shown by red diamonds and
dashed line. The same results for Ti = 7.5 kK correspond to the black stars and line. (b) Two
fits for full-electron and pseudopotental calculation (black and blue lines) are compared with
the data of calculations used to obtain these fits.

following values: γ̃0 = 1900 (µOhm m)−1, g̃ = 1.69, β̃i = 9.085, b̃ = −1.085, γ̃m = 9433,
s̃ = −0.649, C̃i = 1.221, d̃ = 1.888. This choice of functional form is based on the fact that
according to [13] the Wiedemann–Franz law is fulfilled at temperatures up to 10 kK with a
good accuracy. Of course, in the case of copper and higher temperatures the agreement may be
worse. However, independent selection of the coefficients in (2) which was carried out without
any assumption about the validity of the Wiedemann–Franz law, allows us to describe the
behavior with a precision of 6%. Here the accuracy is defined using the data for the standard
deviation in all points is calculated directly. As for thermal conductivity, this error equal to 7%
according to the formula (1).

4. Semi-analytical model for transport properties

Here we provide the description of semi-analytical model constructed on the principles similar
to used in the model presented in the work [30,31].

Electron heat conductivity in time relaxation approximation can be written as

κe =
1

3

Cvv
2

ν
.

Here Cv is the electron heat capacity for s-band electrons at fixed volume, v2 is the mean square
of their velocity, and ν = 1/τ is the mean frequency of collisions between electrons and all types
of scatterers, which is a probability of collision in time unit at given relaxation time τ . After
selection of electron-electron collisions with effective frequence νse and electron-ion collisions
with effective frequency νsi, we can sum their reciprocal values using Matthiessen rule and the
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result is:
1

κe
=

1

κse
+

1

κsi
,

Here κse and κsi are coefficients for heat conductivity of s-electrons due to electron-electron
and electron-ion collisions. By other hand, we can separate the contributions of collisions of
s-electrons with s-(νss) and d-electrons (νsd). That gives

Se(Te, x) =
1

κse
=

1

κss
+

1

κsd
. (3)

The reciprocal value of heat conductivity has its own name which is thermal resistivity Se and
can be calculated using time relaxation approximation for Boltzmann kinetic equation for ss and
sd scattering processes [10]. This solution is a function of electron temperature Te and relative
density x = n/n0, The last is equal to ratio between atom concentration and atom concentration
at low temperature which is close to zero.

In the case of low temperatures

κse = S−1
e (Te, x) ∼ nkB

kBTe

εF
v2F

~

εF

(

εF
kBTe

)2

∼ nkB
~vF
pF

εF
kBTe

∼ ~kB
n

m∗

εF
kBTe

.

Here kB is Boltzmann constant, εF , vF , pF are Fermi energy, velocity and momentum,
respectively, and all of them are depend on density, m∗—s-electron effective mass.

In suggestion that electron effective mass is constant, Fermi energy εF (the difference between
the energy where all 11 valence band states are filled and the bottom of s-band) grows with
atomic concentration n as εF ∼ n2/3. Thus εF = εF0x

2/3, where εF0 is a Fermi energy at zero
pressure. Therefore, at low temperature limit

κse ∼ n
εF

kBTe
∼ x

εF
kBTe

, Se(Te, x) ∼ n−1kBTe

εF
∼ x−1kBTe

εF
.

Thus we can fit these results of calculation of thermal resistivity (3) by such an expression:

Se(Te, x) = x−1 a0t

1 + b0
√
t+ b1t+ b2t2

. (4)

Here we denote t = 6kBTe/εF = 6kBTe/(εF0x
2/3), and coefficients

a0 = 3.80284 × 10−4, b0 = −1.99157, b1 = 1.35301, b2 = 0.0395385

give the value Se in mK/W. Due to the fact that Se is defined only by electronic subsystem,
the expression for this value does not depend on the copper phase state (solid or liquid).

Now we consider the role of electron-ion collisions in heat conductivity determination. We
should investigate the cases of solid and liquid phases separately. In the solid state the
contribution of electron-ion collisions can be approximated by the formula:

κsi ∼ Cvvλsi ∼ nkBC(t)vFλsi.

In the multiplication of s-electron heat capacity and mean square of s-electron velocity v =
(v2F + 3kBTe/m

∗)1/2 = vF (1 + t/4)1/2, we separate the function C(t) which depends on
dimensionless parameter t. This function at x = 1 can be calculated according to [30] and
the results are appoximated by the expression:

C(t) =
t(1 + 11.202t2)

1 + 3.34579t2.04855
. (5)
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Mean free path at s-electron collision with phonons in solid phase is λsi = 1/(nΣ). The effective
cross section is

Σ ∼ u20
Ti

θ
,

where u20 ∼ ~
2/(MkBθ) is a mean squared amplitude of zero oscillations of atoms with mass M ,

and θ is a Debye temperature. Thus, we have for λsi

λsi ∼

(

n
Ti

θ

~
2

MkBθ

)

−1

∼
MkB
~2Ti

θ2

n
∼

θ2

nTi
.

Debye temperature as function of density can be determined using some analytical results for
thermodynamics of a metal in solid state. We can give a representation of cold curve [32,33] for
copper not far from the equilibrium at T = 0 density in the following way:

pc(v) =
A

v

(

(v0
v

)a
−

(v0
v

)b
)

. (6)

v is a volume per atom, v0 is the value of v at zero pressure, a > b.
Debye energy is kBθ = ~skD, where Debye wavenumber kD = (6π2n)1/3 and sound velocity

s ∝
√

K/(Mn). Bulk modulus K can be found using the defined cold curve (6)

K = −v
dpc
dv

=
A

v

(

(a+ 1)
(v0
v

)a
− (b+ 1)

(v0
v

)b
)

.

Thus, Debye temperature squared is

θ2(x) ∝ x2/3y(x), y(x) =
(a+ 1)xa − (b+ 1)xb

a− b
.

Here x = v0/v. Parameters a and b can be defined with the help of cold pressure curve
from [32,33], where the density at zero pressure and temperature is ρ0 = 9.018 g/cc. Therefore,

a = 1.826, b = 1.788.

To consider relative densities in the range x < 1 the function y(x) should be replaced on the
close to it function ȳ(x), which values are always greater than zero:

ȳ(x) =
(1 + cab)x

2a+1

1 + cabxa+1
, θ2(x) ∝ x2/3ȳ(x) (7)

with cab = (a− b)/(b + 1). After introduction of function ȳ(x) (7) mean free path for electron-
phonon collisions is

λsi ∝ [ȳ(x)x−1/3]T−1
i ,

and heat conductivity due to electron-phonon collisions

κsolsi ∝ xȳ(x)C(t)/Ti.

The experimental value of heat conductivity on zero pressure isobar at room temperature
Trt = 0.298 kK and equilibrium density ρrt = 8.96 g/cc is equal to κrt = 401 W/(mK). Thus,
thermal conductivity due to electron-phonon collisions finally has the form:

κsolsi = κrt(x/xrt)(ȳ(x)/ȳ(xrt))(Trt/Ti)C(t)/C(trt). (8)
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(trt = 6kBTrt/(εF0x
2/3
rt )). Then thermal conductivity in the solid state can be calculated as

κsol =
1

Se(Te, x) + 1/ksolsi

. (9)

Also we can construct the similar expression of heat conductivity of liquid copper in two-
temperature state. Electron-electron contribution are not effected by melting and save its form
Se. We suggested that the mean free path for electrons λl due to electron-ion scatterings in

liquid can be expressed in the following way: λl = n
−1/3
0 W (Ti)x

β. Omitting some actions with
λ as for solid phase, we have for heat conductivity κlei due to electron-ion collisions

κlei(Te, Ti, x) ∝ xC(t)x1/3W (Ti)x
β .

By other side, electroresistivity in Drude model

r(Ti, x) =
pF

ne2λl
=

(3π2)1/3

2π
R0

n
1/3
0

n2/3W (Ti)xβ
=

r0

x2/3W (Ti)xβ
.

Here r0 = (3π2)1/3R0/(2π)n
−1/3
0 = 3254 nOhmm, R0 = h/e2 = 25812.8 Ohm is the quantum of

electrical resistivity. Using designations γ = β + 2/3, we have

r(Ti, x) =
r0

W (Ti)xγ
.

We fixed γ equal to 2. We can determine W (T ) using known experimental dependence rl(T )
for copper electroresistivity on the temperature on the boiling curve xl(T ), so we can write

W (T ) =
r0

rl(T )x
γ
l (T )

.

If we introduce the values τl =
√

(Tc − T )/Tc and τm = T − Tm, where Tc = 7890 K is a critical
temperature, Tm = 1.36 kK is a melting temperature at atmospheric pressure, then relative
density on the boiling curve xl(T ) can be written as

xl(T ) = 0.247235 + 0.705936τl(1− 0.115883τ2l + 0.113314τ4l ). (10)

And the behavior of electroresistivity on this curve (nOhmm):

rl(T ) = 210.1 + (1.5τm + 4800τ2m)/(τ2m + 33002). (11)

This expression is the same as known experimental data. At high temperatures, it becomes
equal to the limit for strongly disordered systems. Thus with the use of (5), (10), (11) and we
can obtain heat conductivity for liquid copper due to electron-ion collisions in the form:

κlei(Te, Ti, x) = 138
C(t)

C(tm)

rl(Tm)

rl(Ti)

(

x

xl(Tm)

)2/3 ( x

xl(Ti)

)γ

. (12)

Here tm = 6kBTm/(εF0x
2/3
l (Tm)). The net heat conductivity for liquid phase can be expressed

using κee:
1

κl
= Se +

1

κlei
. (13)
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5. Role of electron-electron collisions

Calculations, carried out using semi-analytical models, allow considering partial contributions
to the electronic conductivity which is related with electron-electron and electron-ion collisions.
In the case of first-principles calculations we can’t do that, and the question of how much, for
example, the contribution of electron-electron collisions remains an open case. The functional of
the electronic density, which is determined by minimization of ground state energy, contains the
contribution of electron correlations in the xc-functional (see, e.g., [5]). Among the calculations
performed in preparation for this work, there were calculations, which differed only in the
use of some well-known xc-functionals. This was done using the VASP code where the PAW
pseudopotentials exists with LDA and PBE forms of xc-contribution to electronic density
functional. The changes caused by the usage of different xc-functionals are found as negligible
in the results for heat conductivity (∼1-2%). For this reason, these data are not presented.

Based on data from semi-analytical models in electron temperatures of the order of several eV,
the effective frequency of electron-electron collisions, obtained as a sum of two types of collisions
(ss+sd) becomes of the same order as effective frequency of electron-ion collisions. Thus, we
may doubt on the correctness of consideration of electron-electron collisions in first-principles
calculations where the difference between the calculated data for the thermal conductivity is
independent from used xc-functional. The usage of these two xc-functionals effect on any
calculated properties of copper, such as a cold curve or DoS. It would be the right choice to check
how the calculation results will change, if the assumption of zero contribution of electron-electron
collisions in QMD calculations is true. In this case, we can perform a summation of the result
of QMD calculations and semianalytically obtained electron-electron contribution according to
the Matthiessen rule:

1

κ
=

1

κFE
+

1

κee
. (14)

The result of full-electron calculation is in the form of fit (1). An analytical expression for
electron-electron contribution is the result of fitting of the tabular data in the solution of the
Boltzmann equation in the relaxation time approximation.

In accordance with the Drude model, we should take into account the contribution of
interband (sd) collisions which was provided by Matthiessen rule:

ρ = ρFE + ρsd. (15)

Here ρFE is the electrical resistivity according to the formula (2). A contribution of sd-
collisions is detected as weakly density dependent, and we neglected this dependence. Then for
the density range of 7.6-9.4 g/cc it can be written [11]:

ρsd(Te) =
0.0942T 2

e

1.2 + 0.1751T 2
e

. (16)

According to the formula (16), the contribution to the interband electron collisions bands
is saturated in the studied temperature range (temperature of electrons in the formula (16) is
taken in eV).

In figure 5, it is shown that the results of summation by the formula (16) do not change in
contrast to the data of full-electron calculation which are decreased at temperatures greater than
2 eV. The results presented in figure 5b, show that the resulting growth of thermal conductivity
becomes slower with increasing of electron temperature. Unlike to the case of electrical resistivity
produced the difference produced by the correction is significant. On the one hand, these first-
principles calculations by full-electron and pseudopotential methods are in good agreement. On
the other hand, as will be seen below, the data after the correction are in good agreement with
the predictions of semi-analytical model which is not related with the data of QMD calculations
of the kinetic coefficients according to its basic statements.
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Figure 5. (a) Electrical resistivity as a function of electron temperature at fixed ion temperature
values: 2 kK (black lines) and 7.5 kK (red lines). The same data but with contribution of
electron-electron collisions by formula (16) are shown by dashed lines with circles (b) Electron
heat conductivity as a function of electron temperature. The results of full-electron (black
dashed line) and pseudopotential (blue circles) were corrected on the value of electron-electron
contribution (red points). The corrected data are shown by solid black line (full-electron
calculations) and blue squares (pseudopotential).

6. Comparison of QMD data with semiempirical model

In figure 6a, the result of comparison for the data on electrical resistivity as a function of
equilibrium temperature, is presented. It is evident that analytical fit defined using the data
of calculations of full-electron approach is in good agreement at a temperature of 2 kK with
the result of the experiment [27], and wide-range data model [34] for copper at 10 kK. In the
latter case, the agreement for the densities of 7.6 and 9.4 g/cc has been shown. But at low
temperatures the experimental value of the electrical resistivity at the melting point is not
reproduced. Although the density corresponding to this point equal to 8 g/cc, the experimental
value for 1.36 kK lies significantly below the obtained values for 7.6 g/cc. Also the obtained
results are located above the predicted values from the other wide-range plasma model [35,36].

In figure 6b, the data for the heat conductivity of copper as a function of electron temperature
are shown. As we can see after the correction for electron-electron contribution, the results
of full-electron and pseudopotential calculations become almost indistinguishable. They agree
well with the curve calculated in accordance with semi-analytical model for liquid copper.
The thermal conductivity of a solid copper based on the results of the same model can be
significantly higher. The result from the work [37], which was obtained by the determination
of parameters of phenomenological formula [7] using FP-LMTO calculations, predict a drop of
thermal conductivity with increasing electronic temperature, and gives much smaller values for
this quantity.
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Figure 6. (a) The results for the analytical fit of full-electron calculation of electrical resistivity
as a function of equilibrium temperature are shown by blue (density 9.4 g/cc) and green (7.6 g/cc)
lines. The experimental result obtained at temperature 2 kK on binodal curve (local value
of density is ∼ 7.5 g/cc) is shown by black diamond. The experimental points for electrical
resistivity of copper before and after melting at atmospheric pressure are shown by letters “S”
and “L”. The predictions of Lee–More–Desjarlais model [34] are shown by blue (9.4 g/cc) and
green (7.6 g/cc) letters “D”. The results for temperatures 7 and 10 kK and density 7.6 g/cc
obtained using BKL model are denoted by green letters “K”. (b) The results of discussed
calculations and models for electron heat conductivity at density 8 g/cc. The data of analytical
fits for full-electron and pseudopotential calculations are shown by black line with stars and
blue line with circles, respectively. The predictions of semi-analytical model of copper transport
properties refer to solid (green line with crosses) and liquid (red line with circles) states. Also
the result of the work [37] based on the semi-analytical approach [7] corresponds to green dotted
line.

7. Conclusions

For liquid homogeneously stretched/compressed copper with heated electrons the data about
a behavior of electronic heat conductivity and electrical resistivity are obtained using QMD
calculations and the Kubo–Greenwood formula. The study of convergence of results calculated
by the method of pseudopotential and full-electron approaches is provided. Presented semi-
analytical model, introduced independently on the calculations, predict the values of the
transport coefficients for copper in the same ranges of thermodynamic parameters. We can
suggest the statement that the correction of first-principles calculations by the contribution
of electron-electron collisions should be made. Results of analytical fits for corrected data of
first-principles calculations and data semi-analytical model are in good agreement.
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